-
Notifications
You must be signed in to change notification settings - Fork 2
/
plotting.py
339 lines (301 loc) · 11.9 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import argparse
import collections
import functools
import json
import multiprocessing as mp
import pathlib
import re
import subprocess
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import pandas as pd
# import matplotlib
# matplotlib.rcParams['mathtext.fontset'] = 'stix'
# matplotlib.rcParams['font.family'] = 'STIXGeneral'
Run = collections.namedtuple("Run", "task method seed xs ys color")
PALETTE = 10 * (
"#377eb8",
"#4daf4a",
"#984ea3",
"#e41a1c",
"#ff7f00",
"#a65628",
"#f781bf",
"#888888",
"#a6cee3",
"#b2df8a",
"#cab2d6",
"#fb9a99",
"#fdbf6f",
)
LEGEND = dict(
fontsize="medium",
numpoints=1,
labelspacing=0,
columnspacing=1.2,
handlelength=1.5,
handletextpad=0.5,
ncol=4,
loc="lower center",
)
def find_keys(args):
filename = next(args.indir[0].glob("**/*.jsonl"))
keys = set()
for line in filename.read_text().split("\n"):
if line:
keys |= json.loads(line).keys()
print(f"Keys ({len(keys)}):", ", ".join(keys), flush=True)
def load_runs(args):
toload = []
for indir in args.indir:
filenames = list(indir.glob("**/*.jsonl"))
for filename in filenames:
task, method, seed = filename.relative_to(indir).parts[:-1]
if not any(p.search(task) for p in args.tasks):
continue
if not any(p.search(method) for p in args.methods):
continue
if method not in args.colors:
args.colors[method] = args.palette[len(args.colors)]
toload.append((filename, indir))
print(f"Loading {len(toload)} of {len(filenames)} runs...")
jobs = [functools.partial(load_run, f, i, args) for f, i in toload]
with mp.Pool(10) as pool:
promises = [pool.apply_async(j) for j in jobs]
runs = [p.get() for p in promises]
runs = [r for r in runs if r is not None]
return runs
def load_run(filename, indir, args):
task, method, seed = filename.relative_to(indir).parts[:-1]
num_steps = 1000000
try:
# Future pandas releases will support JSON files with NaN values.
# df = pd.read_json(filename, lines=True)
with filename.open() as f:
data_arr = []
for l in f.readlines():
data = json.loads(l)
data_arr.append(data)
if data["step"] > num_steps:
break
df = pd.DataFrame(data_arr)
except ValueError as e:
print("Invalid", filename.relative_to(indir), e)
return
try:
df = df[[args.xaxis, args.yaxis]].dropna()
except KeyError:
return
xs = df[args.xaxis].to_numpy()
ys = df[args.yaxis].to_numpy()
color = args.colors[method]
return Run(task, method, seed, xs, ys, color)
def load_baselines(args):
runs = []
directory = pathlib.Path(__file__).parent / "baselines"
for filename in directory.glob("**/*.json"):
for task, methods in json.loads(filename.read_text()).items():
for method, score in methods.items():
if not any(p.search(method) for p in args.baselines):
continue
if method not in args.colors:
args.colors[method] = args.palette[len(args.colors)]
color = args.colors[method]
runs.append(Run(task, method, None, None, score, color))
return runs
def stats(runs):
baselines = sorted(set(r.method for r in runs if r.xs is None))
runs = [r for r in runs if r.xs is not None]
tasks = sorted(set(r.task for r in runs))
methods = sorted(set(r.method for r in runs))
seeds = sorted(set(r.seed for r in runs))
print("Loaded", len(runs), "runs.")
print(f"Tasks ({len(tasks)}):", ", ".join(tasks))
print(f"Methods ({len(methods)}):", ", ".join(methods))
print(f"Seeds ({len(seeds)}):", ", ".join(seeds))
print(f"Baselines ({len(baselines)}):", ", ".join(baselines))
def figure(runs, args):
tasks = sorted(set(r.task for r in runs if r.xs is not None))
rows = int(np.ceil(len(tasks) / args.cols))
figsize = args.size[0] * args.cols, args.size[1] * rows
fig, axes = plt.subplots(rows, args.cols, figsize=figsize)
for task, ax in zip(tasks, axes.flatten()):
relevant = [r for r in runs if r.task == task]
plot(task, ax, relevant, args)
if args.xlim:
for ax in axes[:-1].flatten():
ax.xaxis.get_offset_text().set_visible(False)
if args.xlabel:
for ax in axes[-1]:
ax.set_xlabel(args.xlabel)
if args.ylabel:
for ax in axes[:, 0]:
ax.set_ylabel(args.ylabel)
for ax in axes[len(tasks) :]:
ax.axis("off")
legend(fig, args.labels, **LEGEND)
return fig
def plot(task, ax, runs, args):
try:
env, task = task.split("_", 1)
title = env.capitalize() + " " + task.capitalize()
# title = task.split('_', 1)[1].replace('_', ' ').title()
except IndexError:
title = task.title()
ax.set_title(title)
methods = []
methods += sorted(set(r.method for r in runs if r.xs is not None))
methods += sorted(set(r.method for r in runs if r.xs is None))
xlim = [+np.inf, -np.inf]
for index, method in enumerate(methods):
relevant = [r for r in runs if r.method == method]
if not relevant:
continue
if any(r.xs is None for r in relevant):
baseline(index, method, ax, relevant, args)
else:
if args.aggregate == "std":
xs, ys = curve_std(index, method, ax, relevant, args)
elif args.aggregate == "none":
xs, ys = curve_individual(index, method, ax, relevant, args)
else:
raise NotImplementedError(args.aggregate)
xlim = [min(xlim[0], xs.min()), max(xlim[1], xs.max())]
ax.ticklabel_format(axis="x", style="sci", scilimits=(0, 0))
steps = [1, 2, 2.5, 5, 10]
ax.xaxis.set_major_locator(ticker.MaxNLocator(args.xticks, steps=steps))
ax.yaxis.set_major_locator(ticker.MaxNLocator(args.yticks, steps=steps))
ax.set_xlim(args.xlim or xlim)
if args.xlim:
ticks = sorted({*ax.get_xticks(), *args.xlim})
ticks = [x for x in ticks if args.xlim[0] <= x <= args.xlim[1]]
ax.set_xticks(ticks)
if args.ylim:
ax.set_ylim(args.ylim)
ticks = sorted({*ax.get_yticks(), *args.ylim})
ticks = [x for x in ticks if args.ylim[0] <= x <= args.ylim[1]]
ax.set_yticks(ticks)
def curve_individual(index, method, ax, runs, args):
if args.bins:
for index, run in enumerate(runs):
xs, ys = binning(run.xs, run.ys, args.bins, np.nanmean)
runs[index] = run._replace(xs=xs, ys=ys)
zorder = 10000 - 10 * index - 1
for run in runs:
ax.plot(run.xs, run.ys, label=method, color=run.color, zorder=zorder)
return runs[0].xs, runs[0].ys
def curve_std(index, method, ax, runs, args):
if args.bins:
for index, run in enumerate(runs):
xs, ys = binning(run.xs, run.ys, args.bins, np.nanmean)
runs[index] = run._replace(xs=xs, ys=ys)
xs = np.concatenate([r.xs for r in runs])
ys = np.concatenate([r.ys for r in runs])
order = np.argsort(xs)
xs, ys = xs[order], ys[order]
color = runs[0].color
if args.bins:
def reducer(y):
return (np.nanmean(np.array(y)), np.nanstd(np.array(y)))
xs, ys = binning(xs, ys, args.bins, reducer)
ys, std = ys.T
kw = dict(color=color, zorder=10000 - 10 * index, alpha=0.1, linewidths=0)
ax.fill_between(xs, ys - std, ys + std, **kw)
ax.plot(xs, ys, label=method, color=color, zorder=10000 - 10 * index - 1)
return xs, ys
def baseline(index, method, ax, runs, args):
assert len(runs) == 1 and runs[0].xs is None
y = np.mean(runs[0].ys)
kw = dict(ls="--", color=runs[0].color, zorder=5000 - 10 * index - 1)
ax.axhline(y, label=method, **kw)
def binning(xs, ys, bins, reducer):
binned_xs = np.arange(xs.min(), xs.max() + 1e-10, bins)
binned_ys = []
for start, stop in zip([-np.inf] + list(binned_xs), binned_xs):
left = (xs <= start).sum()
right = (xs <= stop).sum()
binned_ys.append(reducer(ys[left:right]))
binned_ys = np.array(binned_ys)
return binned_xs, binned_ys
def legend(fig, mapping=None, **kwargs):
entries = {}
for ax in fig.axes:
for handle, label in zip(*ax.get_legend_handles_labels()):
if mapping and label in mapping:
label = mapping[label]
entries[label] = handle
leg = fig.legend(entries.values(), entries.keys(), **kwargs)
leg.get_frame().set_edgecolor("white")
extent = leg.get_window_extent(fig.canvas.get_renderer())
extent = extent.transformed(fig.transFigure.inverted())
yloc, xloc = kwargs["loc"].split()
y0 = dict(lower=extent.y1, center=0, upper=0)[yloc]
y1 = dict(lower=1, center=1, upper=extent.y0)[yloc]
x0 = dict(left=extent.x1, center=0, right=0)[xloc]
x1 = dict(left=1, center=1, right=extent.x0)[xloc]
fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=0.5, w_pad=0.5)
def save(fig, args):
args.outdir.mkdir(parents=True, exist_ok=True)
filename = args.outdir / "curves.png"
fig.savefig(filename, dpi=130)
print("Saved to", filename)
filename = args.outdir / "curves.pdf"
fig.savefig(filename)
try:
subprocess.call(["pdfcrop", str(filename), str(filename)])
except FileNotFoundError:
pass # Install texlive-extra-utils.
def main(args):
find_keys(args)
runs = load_runs(args) + load_baselines(args)
stats(runs)
if not runs:
print("Noting to plot.")
return
print("Plotting...")
fig = figure(runs, args)
save(fig, args)
def parse_args():
def boolean(x):
return bool(["False", "True"].index(x))
parser = argparse.ArgumentParser()
parser.add_argument("--indir", nargs="+", type=pathlib.Path, required=True)
parser.add_argument("--outdir", type=pathlib.Path, required=True)
parser.add_argument("--subdir", type=boolean, default=True)
parser.add_argument("--xaxis", type=str, required=True)
parser.add_argument("--yaxis", type=str, required=True)
parser.add_argument("--tasks", nargs="+", default=[r".*"])
parser.add_argument("--methods", nargs="+", default=[r".*"])
parser.add_argument("--baselines", nargs="+", default=[])
parser.add_argument("--bins", type=float, default=0)
parser.add_argument("--aggregate", type=str, default="std")
parser.add_argument("--size", nargs=2, type=float, default=[2.5, 2.3])
parser.add_argument("--cols", type=int, default=4)
parser.add_argument("--xlim", nargs=2, type=float, default=None)
parser.add_argument("--ylim", nargs=2, type=float, default=None)
parser.add_argument("--xlabel", type=str, default=None)
parser.add_argument("--ylabel", type=str, default=None)
parser.add_argument("--xticks", type=int, default=6)
parser.add_argument("--yticks", type=int, default=5)
parser.add_argument("--labels", nargs="+", default=None)
parser.add_argument("--palette", nargs="+", default=PALETTE)
parser.add_argument("--colors", nargs="+", default={})
args = parser.parse_args()
if args.subdir:
args.outdir /= args.indir[0].stem
args.indir = [d.expanduser() for d in args.indir]
args.outdir = args.outdir.expanduser()
if args.labels:
assert len(args.labels) % 2 == 0
args.labels = {k: v for k, v in zip(args.labels[:-1], args.labels[1:])}
if args.colors:
assert len(args.colors) % 2 == 0
args.colors = {k: v for k, v in zip(args.colors[:-1], args.colors[1:])}
args.tasks = [re.compile(p) for p in args.tasks]
args.methods = [re.compile(p) for p in args.methods]
args.baselines = [re.compile(p) for p in args.baselines]
args.palette = 10 * args.palette
return args
if __name__ == "__main__":
main(parse_args())