-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_ser.py
571 lines (452 loc) · 19.6 KB
/
train_ser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import sys
import argparse
import pickle
from data_utils import SERDataset
import torch
import numpy as np
# from model import SER_AlexNet, SER_AlexNet_GAP, SER_CNN
from models.ser_model import Ser_Model
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as f
import os
import random
from tqdm import tqdm
from collections import Counter
from torch.backends import cudnn
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import time
colors_per_class = {
0 : [0, 0, 0],
1 : [255, 107, 107],
2 : [100, 100, 255],
3 : [16, 172, 132],
}
def main(args):
# Aggregate parameters
params={
#model & features parameters
'ser_task': 'SLM',
#training
'repeat_idx': args.repeat_idx,
'val_id': args.val_id,
'test_id': args.test_id,
'num_epochs':args.num_epochs,
'early_stop':args.early_stop,
'batch_size':args.batch_size,
'lr':args.lr,
'random_seed':args.seed,
'use_gpu':args.gpu,
'gpu_ids': args.gpu_ids,
#best mode
'save_label': args.save_label,
#parameters for tuning
'oversampling': args.oversampling,
'pretrained': args.pretrained
}
print('*'*40)
print(f"\nPARAMETERS:\n")
print('*'*40)
print('\n')
for key in params:
print(f'{key:>15}: {params[key]}')
print('*'*40)
print('\n')
#set random seed
seed_everything(params['random_seed'])
# Load dataset
with open(args.features_file, "rb") as fin:
features_data = pickle.load(fin)
ser_dataset = SERDataset(features_data,
val_speaker_id=args.val_id,
test_speaker_id=args.test_id,
oversample=args.oversampling
)
# Train
train_stat = train(ser_dataset, params, save_label=args.save_label)
return train_stat
def parse_arguments(argv):
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Train a SER model in an iterative-based manner with "
"pyTorch and IEMOCAP dataset.")
#Features
parser.add_argument('features_file', type=str,
help='Features extracted from `extract_features.py`.')
#Training
parser.add_argument('--repeat_idx', type=str, default='0',
help='ID of repeat_idx')
parser.add_argument('--val_id', type=str, default='1F',
help='ID of speaker to be used as validation')
parser.add_argument('--test_id', type=str, default='1M',
help='ID of speaker to be used as test')
parser.add_argument('--num_epochs', type=int, default=200,
help='Number of training epochs.')
parser.add_argument('--early_stop', type=int, default=4,
help='Number of early stopping epochs.')
parser.add_argument('--batch_size', type=int, default=32,
help='Mini batch size.')
parser.add_argument('--lr', type=float, default=0.0001,
help='Learning rate.')
parser.add_argument('--seed', type=int, default=100,
help='Random seed for reproducibility.')
parser.add_argument('--gpu', type=int, default=1,
help='If 1, use GPU')
parser.add_argument('--gpu_ids', type=list, default=[0],
help='If 1, use GPU')
#Best Model
parser.add_argument('--save_label', type=str, default=None,
help='Label for the current run, used to save the best model ')
#Parameters for model tuning
parser.add_argument('--oversampling', action='store_true',
help='By default, no oversampling is applied to training dataset.'
'Set this to true to apply random oversampling to balance training dataset')
parser.add_argument('--pretrained', action='store_true',
help='By default, SER_AlexNet or SER_AlexNet_GAP model weights are'
'initialized randomly. Set this flag to initalize with '
'ImageNet pre-trained weights.')
return parser.parse_args(argv)
def test(mode, params, model, criterion_ce, criterion_mml, test_dataset, batch_size, device,
return_matrix=False):
"""Test an SER model.
Parameters
----------
model
PyTorch model
criterion
loss_function
test_dataset
The test dataset
batch_size : int
device
return_matrix : bool
Whether to return the confusion matrix.
Returns
-------
loss, weighted accuracy (WA), unweighted accuracy (UA), confusion matrix
"""
total_loss = 0
test_preds_segs = []
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=batch_size, shuffle=False)
# we'll store the features as NumPy array of size num_images x feature_size and the labels
sne_features1 = None
sne_features2 = None
sne_features3 = None
sne_features4 = None
sne_features5 = None
sne_features6 = None
sne_features7 = None
sne_features8 = None
sne_features9 = None
sne_features10 = None
sne_features11 = None
sne_features12 = None
sne_features13 = None
sne_features14 = None
sne_features15 = None
sne_features16 = None
sne_features17 = None
sne_features18 = None
sne_features19 = None
sne_features20 = None
# sne_features = [sne_features1, sne_features2, sne_features3, sne_features4, sne_features5, sne_features6, sne_features7, sne_features8, sne_features9, sne_features10, sne_features11, sne_features12, sne_features13, sne_features14, sne_features15, sne_features16, sne_features17, sne_features18, sne_features19, sne_features20]
sne_features = [None, None, None, None]
out_features = None
sne_labels = []
model.eval()
# for i, test_batch in enumerate(test_loader):
with tqdm(test_loader) as td:
for test_batch in td:
# Send data to correct device
test_data_spec_batch = test_batch['seg_spec'].to(device)
test_data_mfcc_batch = test_batch['seg_mfcc'].to(device)
test_data_audio_batch = test_batch['seg_audio'].to(device)
test_labels_batch = test_batch['seg_label'].to(device,dtype=torch.long)
labels = test_batch['seg_label'].cpu().detach().numpy()
sne_labels += list(labels)
# Forward
test_outputs = model(test_data_spec_batch, test_data_mfcc_batch, test_data_audio_batch)
test_preds_segs.append(f.log_softmax(test_outputs['M'], dim=1).cpu())
#test loss
test_loss_ce = criterion_ce(test_outputs['M'], test_labels_batch)
# test_loss_mml = criterion_mml(test_outputs['M'], test_labels_batch)
test_loss = test_loss_ce# + test_loss_mml
total_loss += test_loss.item()
'''
# VISULAIZATION
for index in range(4):
str_idx = 'F' + str(index+1)
current_features = test_outputs[str_idx].cpu().numpy()
if sne_features[index] is not None:
sne_features[index] = np.concatenate((sne_features[index], current_features))
else:
sne_features[index] = current_features
'''
'''
# VISULAIZATION
if mode == 'TEST':
for index in range(4):
tsne = TSNE(n_components=2).fit_transform(sne_features[index])
visualize_tsne_2(str(index), tsne, sne_labels, params)
'''
# Average loss
test_loss = total_loss / len(test_loader)
# Accumulate results for val data
test_preds_segs = np.vstack(test_preds_segs)
test_preds = test_dataset.get_preds(test_preds_segs)
# Make sure everything works properly
assert len(test_preds) == test_dataset.n_actual_samples
test_wa = test_dataset.weighted_accuracy(test_preds)
test_ua = test_dataset.unweighted_accuracy(test_preds)
test_cor = test_dataset.confusion_matrix_iemocap(test_preds)
results = (test_loss, test_wa*100, test_ua*100)
if return_matrix:
test_conf = test_dataset.confusion_matrix_iemocap(test_preds)
return results, test_conf
else:
return results
# scale and move the coordinates so they fit [0; 1] range
def scale_to_01_range(x):
# compute the distribution range
value_range = (np.max(x) - np.min(x))
# move the distribution so that it starts from zero
# by extracting the minimal value from all its values
starts_from_zero = x - np.min(x)
# make the distribution fit [0; 1] by dividing by its range
return starts_from_zero / value_range
def visualize_tsne_points_2(name, tx, ty, labels, params):
# initialize matplotlib plot
fig = plt.figure()
ax = fig.add_subplot(111)
# for every class, we'll add a scatter plot separately
for label in colors_per_class:
# find the samples of the current class in the data
indices = [i for i, l in enumerate(labels) if l == label]
# extract the coordinates of the points of this class only
current_tx = np.take(tx, indices)
current_ty = np.take(ty, indices)
# convert the class color to matplotlib format:
# BGR -> RGB, divide by 255, convert to np.array
color = np.array([colors_per_class[label][::-1]], dtype=np.float) / 255
# add a scatter plot with the correponding color and label
ax.scatter(current_tx, current_ty, s=1, c=color, label=label)
# build a legend using the labels we set previously
ax.legend(loc='best')
plt.show()
t = round(time.time()*1000)
t_str = time.strftime('%H_%M_%S',time.localtime(t/1000))
img_path = './results/t-SNE/' + t_str + '_' + name + '_' + params['repeat_idx'] + '_' + params['test_id'] + '.png'
# finally, show the plot
fig.savefig(img_path, dpi=fig.dpi)
def visualize_tsne_points_3(name, tx, ty, tz, labels, params):
# initialize matplotlib plot
fig = plt.figure()
ax = Axes3D(fig)
# ax = fig.add_subplot(111, projection='3d')
# for every class, we'll add a scatter plot separately
for label in colors_per_class:
# find the samples of the current class in the data
indices = [i for i, l in enumerate(labels) if l == label]
# extract the coordinates of the points of this class only
current_tx = np.take(tx, indices)
current_ty = np.take(ty, indices)
current_tz = np.take(tz, indices)
# convert the class color to matplotlib format:
# BGR -> RGB, divide by 255, convert to np.array
color = np.array([colors_per_class[label][::-1]], dtype=np.float) / 255
# add a scatter plot with the correponding color and label
ax.scatter(current_tx, current_ty, current_tz, s=4, c=color, label=label)
# build a legend using the labels we set previously
ax.legend(loc='best')
t = round(time.time()*1000)
t_str = time.strftime('%H_%M_%S',time.localtime(t/1000))
img_path = './results/t-SNE/' + t_str + '_' + name + '_' + params['repeat_idx'] + '_' + params['test_id'] + '.png'
print(img_path)
# finally, show the plot
fig.savefig(img_path, dpi=fig.dpi)
def visualize_tsne_2(name, tsne, labels, params):
# extract x and y coordinates representing the positions of the images on T-SNE plot
tx = tsne[:, 0]
ty = tsne[:, 1]
# scale and move the coordinates so they fit [0; 1] range
tx = scale_to_01_range(tx)
ty = scale_to_01_range(ty)
# visualize the plot: samples as colored points
visualize_tsne_points_2(name, tx, ty, labels, params)
def visualize_tsne_3(name, tsne, labels, params):
# extract x and y coordinates representing the positions of the images on T-SNE plot
tx = tsne[:, 0]
ty = tsne[:, 1]
tz = tsne[:, 2]
# scale and move the coordinates so they fit [0; 1] range
tx = scale_to_01_range(tx)
ty = scale_to_01_range(ty)
tz = scale_to_01_range(tz)
# visualize the plot: samples as colored points
visualize_tsne_points_3(name, tx, ty, tz, labels, params)
def train(dataset, params, save_label='default'):
#get dataset
train_dataset = dataset.get_train_dataset()
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=params['batch_size'],
shuffle=True)
val_dataset = dataset.get_val_dataset()
test_dataset = dataset.get_test_dataset()
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
print("pytorch version: ", torch.__version__)
print("cuda version: ", torch.version.cuda)
print("cudnn version: ", torch.backends.cudnn.version())
print("gpu name: ", torch.cuda.get_device_name())
print("gpu index: ", torch.cuda.current_device())
#select device
if params['use_gpu'] == 1:
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
# Construct model, optimizer and criterion
batch_size = params['batch_size']
# print(type(Ser_Model()))
model = Ser_Model().to(device)
print(model.eval())
print(f"Number of trainable parameters: {count_parameters(model.train())}")
print('\n')
#Set loss criterion and optimizer
optimizer = optim.AdamW(model.parameters(), lr=params['lr'])
criterion_ce = nn.CrossEntropyLoss()
criterion_mml = nn.MultiMarginLoss(margin=0.5)
loss_format = "{:.04f}"
acc_format = "{:.02f}%"
acc_format2 = "{:.02f}"
best_val_wa = 0
best_val_ua = 0
save_path = save_label + '.pth'
best_val_loss = 1e8
best_val_acc = -1e8
all_train_loss =[]
all_train_wa =[]
all_train_ua=[]
all_val_loss=[]
all_val_wa=[]
all_val_ua=[]
train_preds = []
print("Start Training!!!")
for epoch in range(params['num_epochs']):
y_pred = {'M': [], 'A': []}
y_true = {'M': [], 'A': []}
# adjust_learning_rate(params['lr'], optimizer, epoch)
#get current learning rate
for param_group in optimizer.param_groups:
current_lr = param_group['lr']
# Train one epoch
total_loss = 0
train_preds = []
target=[]
model.train()
# for i, train_batch in enumerate(train_loader):
with tqdm(train_loader) as td:
for train_batch in td:
# Clear gradients
optimizer.zero_grad()
# Send data to correct device
train_data_spec_batch = train_batch['seg_spec'].to(device)
train_data_mfcc_batch = train_batch['seg_mfcc'].to(device)
train_data_audio_batch = train_batch['seg_audio'].to(device)
train_labels_batch = train_batch['seg_label'].to(device,dtype=torch.long)
# Forward pass
outputs = model(train_data_spec_batch, train_data_mfcc_batch, train_data_audio_batch)
#for m in params['ser_task']:
# y_pred[m].append(f.log_softmax(outputs[m], dim=1).cpu().detach().numpy())
# y_true.append
train_preds.append(f.log_softmax(outputs['M'], dim=1).cpu().detach().numpy())
# Compute the loss, gradients, and update the parameters
train_loss_ce = criterion_ce(outputs['M'], train_labels_batch)
# train_loss_mml = criterion_mml(outputs['M'], train_labels_batch)
train_loss = train_loss_ce# + train_loss_mml
train_loss.backward()
total_loss += train_loss.item()
optimizer.step()
# Evaluate training data
train_loss = total_loss / len(train_loader)
# Accumulate results for train data
train_preds = np.vstack(train_preds)
train_preds = train_dataset.get_preds(train_preds)
# Make sure everything works properly
train_wa = train_dataset.weighted_accuracy(train_preds) * 100
train_ua = train_dataset.unweighted_accuracy(train_preds) * 100
#train_cor = train_dataset.confusion_matrix_iemocap(train_preds)
all_train_loss.append(loss_format.format(train_loss))
all_train_wa.append(acc_format2.format(train_wa))
all_train_ua.append(acc_format2.format(train_ua))
#Validation
with torch.no_grad():
val_result = test('VAL', params,
model, criterion_ce, criterion_mml, val_dataset,
batch_size=64,
device=device)
val_loss = val_result[0]
val_wa = val_result[1]
val_ua = val_result[2]
# Update best model based on validation UA
# if val_loss < (best_val_loss - 1e-6):
if val_wa + val_ua > best_val_acc:
print("True")
best_val_ua = val_ua
best_val_wa = val_wa
best_val_loss = val_loss
best_val_acc = val_wa + val_ua
best_epoch = epoch
if save_path is not None:
torch.save(model.state_dict(), save_path)
print(best_epoch, epoch)
all_val_loss.append(loss_format.format(val_loss))
all_val_wa.append(acc_format2.format(val_wa))
all_val_ua.append(acc_format2.format(val_ua))
print(f"Epoch {epoch+1} (lr = {current_lr})\
Loss: {loss_format.format(train_loss)} - {loss_format.format(val_loss)} - WA: {acc_format.format(val_wa)} <{acc_format.format(best_val_wa)}> - UA: {acc_format.format(val_ua)} <{acc_format.format(best_val_ua)}>")
# early stop
if (epoch - best_epoch >= params['early_stop']) and (epoch > 5):
break
#break
# Test on best model
with torch.no_grad():
model.load_state_dict(torch.load(save_path))
test_result, confusion_matrix = test('TEST', params,
model, criterion_ce, criterion_mml, test_dataset,
batch_size=64, #params['batch_size'],
device=device, return_matrix=True)
print("*" * 40)
print("RESULTS ON TEST SET:")
print("Loss:{:.4f}\tWA: {:.2f}\tUA: "
"{:.2f}".format(test_result[0], test_result[1], test_result[2]))
print("Confusion matrix:\n{}".format(confusion_matrix[1]))
return(epoch, best_epoch, all_train_loss, all_train_wa, all_train_ua,
all_val_loss, all_val_wa, all_val_ua,
loss_format.format(test_result[0]),
acc_format2.format(test_result[1]),
acc_format2.format(test_result[2]),
confusion_matrix[0])
# seeding function for reproducibility
def seed_everything(seed):
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
#cudnn.benchmark=True
#cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def adjust_learning_rate(lr_0, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = lr_0 * (0.1 ** (epoch // 10))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# to count the number of trainable parameter in the model
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))