-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #45 from lilijap/feat-update-readme
Feat: update readme and reduce query.tsv list
- Loading branch information
Showing
3 changed files
with
18 additions
and
77 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,77 +1,13 @@ | ||
Topic Use URL | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/A-Survey-on-Graph-Neural-Networks-for-Time-Series%3A-Jin-Koh/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Graph-Guided-Network-for-Irregularly-Sampled-Time-Zhang-Zeman/455bfc515eb279cc09023faa1f78c6efb61224ba?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Taming-Local-Effects-in-Graph-based-Spatiotemporal-Cini-Marisca/e2a83369383aff37224170c1ae3d3870d5d9e419?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Sparse-Graph-Learning-from-Spatiotemporal-Time-Cini-Zambon/0d01d21137a5af9f04e4b16a55a0f732cb8a540b?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Graph-Deep-Learning-for-Time-Series-Forecasting-Cini-Marisca/ccea298edb788edf821aef58f0952c3e8debc25a?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Large-Language-Models-Are-Zero-Shot-Time-Series-Gruver-Finzi/123acfbccca0460171b6b06a4012dbb991cde55b?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Graph-Mamba%3A-Towards-Long-Range-Graph-Sequence-with-Wang-Tsepa/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/A-decoder-only-foundation-model-for-time-series-Das-Kong/f45f85fa1beaa795c24c4ff86f1f2deece72252f?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/UniTS%3A-Building-a-Unified-Time-Series-Model-Gao-Koker/bcbcc2e1af8bcf6b07edf866be95116a8ed0bf91?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Unified-Training-of-Universal-Time-Series-Woo-Liu/4a111f7a3b56d0468f13104999844885157ef17d?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Time-LLM%3A-Time-Series-Forecasting-by-Reprogramming-Jin-Wang/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277?utm_source=direct_link | ||
Time-series forecasting 1 https://www.semanticscholar.org/paper/Tiny-Time-Mixers-(TTMs)%3A-Fast-Pre-trained-Models-of-Ekambaram-Jati/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6?utm_source=direct_link | ||
Time-series forecasting 0 https://www.semanticscholar.org/paper/Self-Supervised-Contrastive-Pre-Training-For-Time-Zhang-Zhao/648d90b713997a771e2c49f02cd771e8b7b10b37?utm_source=direct_link | ||
Time-series forecasting 0 https://www.semanticscholar.org/paper/Domain-Adaptation-for-Time-Series-Under-Feature-and-He-Queen/5bd2c0acaf58c25f71617db2396188c74d29bf14?utm_source=direct_link | ||
Time-series forecasting 0 https://www.semanticscholar.org/paper/AZ-whiteness-test%3A-a-test-for-signal-uncorrelation-Zambon-Alippi/c3c94ccc094dcf546e8e31c9a42506302e837524?utm_source=direct_link | ||
Time-series forecasting 0 https://www.semanticscholar.org/paper/Graph-state-space-models-Zambon-Cini/279cd637b7e38bba1dd8915b5ce68cbcacecbe68?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Discovering-governing-equations-from-data-by-sparse-Brunton-Proctor/5d150cec2775f9bc863760448f14104cc8f42368?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Robust-learning-from-noisy%2C-incomplete%2C-data-via-Reinbold-Kageorge/60d0d998fa038182b3b69a57adb9b2f82d40589c?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Data-driven-discovery-of-coordinates-and-governing-Champion-Lusch/3c9961153493370500020c81527b3548c96f81e0?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Chaos-as-an-intermittently-forced-linear-system-Brunton-Brunton/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Sparse-identification-of-nonlinear-dynamics-for-in-Kaiser-Kutz/b2eb064f432557c59ce99834d7dc7817e4687271?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Inferring-Biological-Networks-by-Sparse-of-Dynamics-Mangan-Brunton/06a0ba437d41a7c82c08a9636a4438c1b5031378?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/SINDy-PI%3A-a-robust-algorithm-for-parallel-implicit-Kaheman-Kutz/4971f9abd024e40fbbdff2e9492745b68a6bca01?utm_source=direct_link | ||
Symbolic regression 0 https://www.semanticscholar.org/paper/Multidimensional-Approximation-of-Nonlinear-Systems-Gel%C3%9F-Klus/2b2aa13d4959073f61ad70555bc8c7da7d116196?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Learning-Discrepancy-Models-From-Experimental-Data-Kaheman-Kaiser/73dd9c49f205280991826b2ea4b50344203916b4?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Discovery-of-Physics-From-Data%3A-Universal-Laws-and-Silva-Higdon/35e2571c17246577e0bc1b9de57a314c3b60e220?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Data-driven-discovery-of-partial-differential-Rudy-Brunton/0acd117521ef5aafb09fed02ab415523b330b058?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Ensemble-SINDy%3A-Robust-sparse-model-discovery-in-Fasel-Kutz/883547fdbd88552328a6615ec620f96e39c57018?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/Learning-sparse-nonlinear-dynamics-via-optimization-Bertsimas-Gurnee/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8?utm_source=direct_link | ||
Symbolic regression 1 https://www.semanticscholar.org/paper/A-Unified-Framework-for-Sparse-Relaxed-Regularized-Zheng-Askham/c0fc3882a9976f6a9cdc3a724bce184b786503da?utm_source=direct_link | ||
Neural ODEs 1 https://www.semanticscholar.org/paper/Neural-Ordinary-Differential-Equations-Chen-Rubanova/449310e3538b08b43227d660227dfd2875c3c3c1?utm_source=direct_link | ||
Neural ODEs 1 https://www.semanticscholar.org/paper/Dissecting-Neural-ODEs-Massaroli-Poli/b8db0d2a39ca356abe63a8eabbc5ed9c868f5907?utm_source=direct_link | ||
Neural ODEs 1 https://www.semanticscholar.org/paper/Graph-Neural-Ordinary-Differential-Equations-Poli-Massaroli/8540780e6b9422f7a1264edb70f39d3ff79bb8c1?utm_source=direct_link | ||
Neural ODEs 1 https://www.semanticscholar.org/paper/GRAND%3A-Graph-Neural-Diffusion-Chamberlain-Rowbottom/95eee51c1cb1771e96cd182f47c90a7877461530?utm_source=direct_link | ||
Neural ODEs 1 https://www.semanticscholar.org/paper/Beltrami-Flow-and-Neural-Diffusion-on-Graphs-Chamberlain-Rowbottom/af84c6db6b5c41ca628867ff4a27566e9ca3c69e?utm_source=direct_link | ||
Neural ODEs 1 https://www.semanticscholar.org/paper/Message-Passing-Neural-PDE-Solvers-Brandstetter-Worrall/be8d39424a9010bfc0805385cc91edee383c2e24?utm_source=direct_link | ||
Neural ODEs 0 https://www.semanticscholar.org/paper/Graph-Coupled-Oscillator-Networks-Rusch-Chamberlain/a50a2a191c98dfe045ac2139495ee80ff1338e47?utm_source=direct_link | ||
Neural ODEs 0 https://www.semanticscholar.org/paper/Continuous-PDE-Dynamics-Forecasting-with-Implicit-Yin-Kirchmeyer/d39ad86d4617e069d89b6d62c760c2ba268a2b85?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Learning-rigid-dynamics-with-face-interaction-graph-Allen-Rubanova/d6fdd8fc0c5fc052d040687e72638fb4297661cc?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Graph-network-simulators-can-learn-discontinuous%2C-Allen-Lopez-Guevara/979c112d5ed2f7653990a3591cdfccfad0dc27fd?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Learning-Mesh-Based-Simulation-with-Graph-Networks-Pfaff-Fortunato/9e20f6874feaaf7c9994f9875b1d9cab17a2fd59?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Physical-Design-using-Differentiable-Learned-Allen-Lopez-Guevara/90cc86274f947b15ec3cc8c1dcfe1fc8db608e03?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Constraint-based-graph-network-simulator-Rubanova-Sanchez-Gonzalez/e0ee02a573b3d83fec55ed5d7c80f1afa055a7b4?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Learning-3D-Particle-based-Simulators-from-RGB-D-Whitney-Lopez-Guevara/4fd23f18cfb2105ccadda5a51fed13063d611fff?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Interaction-Networks-for-Learning-about-Objects%2C-Battaglia-Pascanu/ae42c0cff384495683192b06bd985cdd7a54632a?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Graph-networks-as-learnable-physics-engines-for-and-Sanchez-Gonzalez-Heess/43879cf527f4918955fd55128baa6745174d8555?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Relational-inductive-biases%2C-deep-learning%2C-and-Battaglia-Hamrick/3a58efcc4558727cc5c131c44923635da4524f33?utm_source=direct_link | ||
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Learning-to-Simulate-Complex-Physics-with-Graph-Sanchez-Gonzalez-Godwin/c529f5b08675f787cdcc094ee495239592339f82?utm_source=direct_link | ||
Physics-based GNNs 0 https://www.semanticscholar.org/paper/Discovering-Symbolic-Models-from-Deep-Learning-with-Cranmer-Sanchez-Gonzalez/643ac3ef063c77eb02a3d52637c11fe028bfae28?utm_source=direct_link | ||
Physics-based GNNs 0 https://www.semanticscholar.org/paper/Rediscovering-orbital-mechanics-with-machine-Lemos-Jeffrey/2232751169e57a14723bfffb4ab26aa0e0e3839a?utm_source=direct_link | ||
Latent space simulators 1 https://www.semanticscholar.org/paper/Molecular-latent-space-simulators-Sidky-Chen/2d3000d245988a02d3c1060211e9d89c67147b49?utm_source=direct_link | ||
Latent space simulators 1 https://www.semanticscholar.org/paper/Extended-dynamic-mode-decomposition-with-dictionary-Li-Dietrich/80744010d90c8ede052c7ac6ba8c38c9de959c6e?utm_source=direct_link | ||
Latent space simulators 1 https://www.semanticscholar.org/paper/Time-lagged-autoencoders%3A-Deep-learning-of-slow-for-Wehmeyer-No%C3%A9/d8d8e2c04ca47bd628bd2a499e03ad7cd29633da?utm_source=direct_link | ||
Latent space simulators 1 https://www.semanticscholar.org/paper/VAMPnets-for-deep-learning-of-molecular-kinetics-Mardt-Pasquali/58912e2c2aaa77d1448d51e9d9460e06a5b924b9?utm_source=direct_link | ||
Latent space simulators 1 https://www.semanticscholar.org/paper/Nonlinear-Discovery-of-Slow-Molecular-Modes-using-Chen-Sidky/2e7163e31e9b32cec11005678bae9e1dbeb6d573?utm_source=direct_link | ||
Latent space simulators 1 https://www.semanticscholar.org/paper/Variational-Approach-for-Learning-Markov-Processes-Wu-No'e/b921efbb226fe2618ec160563a2bcb5999c7c28f?utm_source=direct_link | ||
Parametrizing using ML 1 https://www.semanticscholar.org/paper/Deep-learning-prediction-of-patient-response-time-Lu-Bender/4e837965494c4edbec4d30832d31ba5639996da8?utm_source=direct_link | ||
Parametrizing using ML 1 https://www.semanticscholar.org/paper/Coupled-Graph-ODE-for-Learning-Interacting-System-Huang-Sun/aaf2145f9998f304513c0c9b530ee9f7750c6f55?utm_source=direct_link | ||
Parametrizing using ML 1 https://www.semanticscholar.org/paper/CellBox%3A-Interpretable-Machine-Learning-for-Biology-Yuan-Shen/6bd28606fbae3449f831248804264c9885e992f9?utm_source=direct_link | ||
Parametrizing using ML 0 https://www.semanticscholar.org/paper/Efficient-Amortised-Bayesian-Inference-for-and-Roeder-Grant/309c5ae93a4cabfd37747abd130866240e265b2d?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/Solving-real-world-optimization-tasks-using-neural-Seo/23c7b93a379c26c3738921282771e1a545538703?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/Systems-biology-informed-neural-networks-(SBINN)-Przedborski-Smalley/68d54a4ef82873fd3a0e857ad2c136d65fa17db8?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/Physics-informed-machine-learning-Karniadakis-Kevrekidis/53c9f3c34d8481adaf24df3b25581ccf1bc53f5c?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/Physics-Informed-Deep-Learning-(Part-I)%3A-Solutions-Raissi-Perdikaris/fa352e8e4d9ec2f4b66965dd9cea75167950152a?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/Physics-Informed-Deep-Learning-(Part-II)%3A-Discovery-Raissi-Perdikaris/25903eabbb1830aefa82048212e643eec660de0b?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/Multistep-Neural-Networks-for-Data-driven-Discovery-Raissi-Perdikaris/a41fe2302296a9d1eabc382415d4049905fddb36?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/Systems-biology-informed-deep-learning-for-and-Yazdani-Lu/33da5e93b3c9c02256c6a98f8a843ae62e27d436?utm_source=direct_link | ||
PINNs 1 https://www.semanticscholar.org/paper/B-PINNs%3A-Bayesian-Physics-Informed-Neural-Networks-Yang-Meng/acc257947545c8daa968138e317e03edc90e79b0?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/Hamiltonian-Systems-and-Transformation-in-Hilbert-Koopman/bf657b5049c1a5c839369d3948ffb4c0584cd1d2?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/Applied-Koopmanism.-Budi%C5%A1i%C4%87-Mohr/2c9be1e38f978f43427ea5293b3138e0c4fede71?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/Koopman-Invariant-Subspaces-and-Finite-Linear-of-Brunton-Brunton/a3c279828af3621d2c16ac26e5900b970383f60e?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/Deep-learning-for-universal-linear-embeddings-of-Lusch-Kutz/6adeda1af8abc6bc3c17c0b39f635a845476cd9f?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/Deep-learning-models-for-global-coordinate-that-Gin-Lusch/0ce6f9c3d9dccdc5f7567646be7a7d4c6415576b?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/From-Fourier-to-Koopman%3A-Spectral-Methods-for-Time-Lange-Brunton/11df7f23f72703ceefccc6367a6a18719850c53e?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/Modern-Koopman-Theory-for-Dynamical-Systems-Brunton-Budi%C5%A1i%C4%87/68b6ca45a588d538b36335b23f6969c960cf2e6e?utm_source=direct_link | ||
Koopman operator 1 https://www.semanticscholar.org/paper/Parsimony-as-the-ultimate-regularizer-for-machine-Kutz-Brunton/893768d957f8a46f0ba5bab11e5f2e2698ef1409?utm_source=direct_link |
Oops, something went wrong.