diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/404.html b/404.html new file mode 100644 index 00000000..1de0638f --- /dev/null +++ b/404.html @@ -0,0 +1,600 @@ + + + + + + + + + + + + + + + + + + + + + +Literature Survey (VPE) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ +

404 - Not found

+ +
+
+ + + +
+ + + +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + \ No newline at end of file diff --git a/Symbolic regression/index.html b/Symbolic regression/index.html new file mode 100644 index 00000000..2dbfa85b --- /dev/null +++ b/Symbolic regression/index.html @@ -0,0 +1,5275 @@ + + + + + + + + + + + + + + + + + + + + + + + +Literature Survey (VPE) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + + + + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

Symbolic regression

+ + + + + + + + +

+ This page was last updated on 2024-07-29 06:05:55 UTC +

+ +
+

+ +

+
+ + + +
+

+

Manually curated articles on Symbolic regression

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index + View recommendations +
visibility_off + Discovering governing equations from data by sparse identification of nonlinear dynamical systems + + + S. Brunton, J. Proctor, J. Kutz + 2015-09-11Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences of the United States of America313263 + open_in_new +
visibility_off + Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression + + + Patrick A. K. Reinbold, Logan Kageorge, M. Schatz, R. Grigoriev + 2021-02-24Nature Communications8323 + open_in_new +
visibility_off + Data-driven discovery of coordinates and governing equations + + + Kathleen P. Champion, Bethany Lusch, J. Kutz, S. Brunton + 2019-03-29Proceedings of the National Academy of Sciences of the United States of America59163 + open_in_new +
visibility_off + Chaos as an intermittently forced linear system + + + S. Brunton, Bingni W. Brunton, J. Proctor, E. Kaiser, J. Kutz + 2016-08-18Nature Communications44263 + open_in_new +
visibility_off + Sparse identification of nonlinear dynamics for model predictive control in the low-data limit + + + E. Kaiser, J. Kutz, S. Brunton + 2017-11-15Proceedings of the Royal Society A, Proceedings. Mathematical, Physical, and Engineering Sciences42463 + open_in_new +
visibility_off + Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics + + + N. Mangan, S. Brunton, J. Proctor, J. Kutz + 2016-05-26IEEE Transactions on Molecular Biological and Multi-Scale Communications, IEEE Transactions on Molecular, Biological and Multi-Scale Communications31263 + open_in_new +
visibility_off + SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics + + + Kadierdan Kaheman, J. Kutz, S. Brunton + 2020-04-05Proceedings of the Royal Society A, Proceedings. Mathematical, Physical, and Engineering Sciences18763 + open_in_new +
visibility_off + Multidimensional Approximation of Nonlinear Dynamical Systems + + + Patrick Gelß, Stefan Klus, J. Eisert, Christof Schutte + 2018-09-07Journal of Computational and Nonlinear Dynamics6176 + open_in_new +
visibility_off + Learning Discrepancy Models From Experimental Data + + + Kadierdan Kaheman, E. Kaiser, B. Strom, J. Kutz, S. Brunton + 2019-09-18arXiv.org, ArXiv3163 + open_in_new +
visibility_off + Discovery of Physics From Data: Universal Laws and Discrepancies + + + Brian M. de Silva, D. Higdon, S. Brunton, J. Kutz + 2019-06-19Frontiers in Artificial Intelligence6663 + open_in_new +
visibility_off + Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control + + + Urban Fasel, J. Kutz, Bingni W. Brunton, S. Brunton + 2021-11-22Proceedings of the Royal Society A, Proceedings. Mathematical, Physical, and Engineering Sciences15463 + open_in_new +
visibility_off + Learning sparse nonlinear dynamics via mixed-integer optimization + + + D. Bertsimas, Wes Gurnee + 2022-06-01Nonlinear Dynamics2790 + open_in_new +
visibility_off + A Unified Framework for Sparse Relaxed Regularized Regression: SR3 + + + P. Zheng, T. Askham, S. Brunton, J. Kutz, A. Aravkin + 2018-07-14IEEE Access11463 + open_in_new +
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-indexView recommendations
+

+
+ +
+

+

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
visibility_off + Discovering governing equation in structural dynamics from acceleration-only measurements + + + Calvin Alvares, Souvik Chakraborty + 2024-07-18ArXiv00
visibility_off + Discovery of differential equations using sparse state and parameter regression + + + Teddy Meissner, Karl Glasner + 2024-06-10ArXiv00
visibility_off + VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification + + + Paolo Conti, Jonas Kneifl, Andrea Manzoni, A. Frangi, Jörg Fehr, S. Brunton, J. Kutz + 2024-05-31ArXiv163
visibility_off + Minimum Reduced-Order Models via Causal Inference + + + Nan Chen, Honghu Liu + 2024-06-29ArXiv00
visibility_off + Data-driven system identification of unknown systems utilising sparse identification of nonlinear dynamics (SINDy) + + + P. Pandey, H. Haddad Khodaparast, M. Friswell, T. Chatterjee, N. Jamia, T. Deighan + 2024-06-01Journal of Physics: Conference Series01
visibility_off + Learning dynamical systems from data: An introduction to physics-guided deep learning + + + Rose Yu, Rui Wang + 2024-06-24Proceedings of the National Academy of Sciences of the United States of America11
visibility_off + Sparse identification of quasipotentials via a combined data-driven method + + + Bo Lin, P. Belardinelli + 2024-07-06ArXiv012
visibility_off + Expressive Symbolic Regression for Interpretable Models of Discrete-Time Dynamical Systems + + + Adarsh Iyer, N. Boddupalli, Jeff Moehlis + 2024-06-05ArXiv05
visibility_off + Iterative Sparse Identification of Nonlinear Dynamics + + + Jinho Choi + 2024-06-06ArXiv00
visibility_off + Physics-informed active learning with simultaneous weak-form latent space dynamics identification + + + Xiaolong He, April Tran, David M. Bortz, Youngsoo Choi + 2024-06-29ArXiv03
visibility_off + Data-Driven Linearization of Dynamical Systems + + + George Haller, B. Kasz'as + 2024-07-11ArXiv00
visibility_off + Learning Networked Dynamical System Models with Weak Form and Graph Neural Networks + + + Yin Yu, Daning Huang, Seho Park, H. Pangborn + 2024-07-23ArXiv011
visibility_off + Modeling Nonlinear Dynamics from Videos + + + Antony Yang, Joar Axaas, Fanni K'ad'ar, G'abor St'ep'an, George Haller + 2024-06-13ArXiv10
visibility_off + MBD-NODE: physics-informed data-driven modeling and simulation of constrained multibody systems + + + Jingquan Wang, Shu Wang, H. Unjhawala, Jinlong Wu, D. Negrut + 2024-07-11Multibody System Dynamics028
visibility_off + Extracting self-similarity from data + + + Nikos Bempedelis, Luca Magri, Konstantinos Steiros + 2024-07-15ArXiv00
visibility_off + Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints + + + Yunjin Tong + 2024-06-20ArXiv00
visibility_off + Machine Learning Conservation Laws of Dynamical systems + + + Meskerem Abebaw Mebratie, Rudiger Nather, Guido Falk von Rudorff, Werner M. Seiler + 2024-05-31ArXiv05
visibility_off + Koopman-LQR Controller for Quadrotor UAVs from Data + + + Zeyad M. Manaa, Ayman M. Abdallah, Mohammad A. Abido, Syed S. Azhar Ali + 2024-06-25ArXiv11
visibility_off + Physics-informed nonlinear vector autoregressive models for the prediction of dynamical systems + + + James H. Adler, Samuel Hocking, Xiaozhe Hu, Shafiqul Islam + 2024-07-25ArXiv02
visibility_off + Identifying Ordinary Differential Equations for Data-efficient Model-based Reinforcement Learning + + + Tobias Nagel, Marco F. Huber + 2024-06-28ArXiv02
visibility_off + Development of data-driven modeling method for nonlinear coupling components + + + Taesan Ryu, Seunghun Baek + 2024-06-27Scientific Reports00
visibility_off + Uncovering dynamical equations of stochastic decision models using data-driven SINDy algorithm + + + Brendan Lenfesty, Saugat Bhattacharyya, KongFatt Wong-Lin + 2024-06-03ArXiv01
visibility_off + Tangent and Normal Space-Based Method for Dynamics Identification in Microgrids + + + Hanyang He, John Harlim, Daning Huang, Yan Li + 2024-06-192024 IEEE Transportation Electrification Conference and Expo (ITEC)00
visibility_off + Extended Lagrangian-Informed Deep Learning and Control for Electro-mechanical Systems + + + Nikhil Pagar, Pegah Ghaf-Ghanbari, Atul G. Kelkar, Javad Mohammadpour Velni + 2024-06-252024 European Control Conference (ECC)013
visibility_off + Tensor-Based Data-Driven Identification of Partial Differential Equations + + + Wanting Lin, Xiaofan Lu, Linan Zhang + 2024-06-10Journal of Computational and Nonlinear Dynamics01
visibility_off + Identification of Recurrent Dynamics in Distributed Neural Populations + + + R. Osuna-Orozco, Edward Castillo, K. Harris, Samantha R. Santacruz + 2024-06-01bioRxiv015
visibility_off + Physics-constrained learning for PDE systems with uncertainty quantified port-Hamiltonian models + + + Kaiyuan Tan, Peilun Li, Thomas Beckers + 2024-06-17DBLP, ArXiv01
visibility_off + Model fusion for efficient learning of nonlinear dynamical systems + + + Vatsal Kedia, Vivek S. Pinnamaraju, Dinesh Patil + 2024-06-06ArXiv02
visibility_off + Unambiguous Models and Machine Learning Strategies for Anomalous Extreme Events in Turbulent Dynamical System + + + D. Qi + 2024-06-01Entropy013
visibility_off + Amortized Equation Discovery in Hybrid Dynamical Systems + + + Yongtuo Liu, Sara Magliacane, Miltiadis Kofinas, E. Gavves + 2024-06-06ArXiv036
visibility_off + Learning nonlinear operators in latent spaces for real-time predictions of complex dynamics in physical systems + + + Katiana Kontolati, S. Goswami, G. Em Karniadakis, Michael D Shields + 2024-06-14Nature Communications319
visibility_off + On instabilities in neural network-based physics simulators + + + Daniel Floryan + 2024-06-18ArXiv10
visibility_off + Physiology-informed regularization enables training of universal differential equation systems for biological applications + + + Max de Rooij, Balázs Erdős, N. V. van Riel, Shauna D. O’Donovan + 2024-06-01bioRxiv05
visibility_off + Flatness-Based Identification of Nonlinear Dynamics + + + Alexander M. Kopp, Lisa Fuchs, Christoph Ament + 2024-06-112024 32nd Mediterranean Conference on Control and Automation (MED)00
visibility_off + An overview of systems-theoretic guarantees in data-driven model predictive control + + + J. Berberich, Frank Allgöwer + 2024-06-06ArXiv121
visibility_off + Model Predictive Control of the Neural Manifold + + + Christof Fehrman, C. D. Meliza + 2024-06-21ArXiv06
visibility_off + Optimal Sparsity in Nonlinear Non-Parametric Reduced Order Models for Transonic Aeroelastic Systems + + + M. Candon, Errol Hale, Maciej Balajewicz, Arturo Delgado-Gutiérrez, Pier Marzocca + 2024-07-11ArXiv17
visibility_off + Neural empirical interpolation method for nonlinear model reduction + + + Max Hirsch, F. Pichi, J. Hesthaven + 2024-06-05ArXiv064
visibility_off + Modeling Unknown Stochastic Dynamical System Subject to External Excitation + + + Yuan Chen, Dongbin Xiu + 2024-06-22ArXiv01
visibility_off + Learning interpretable dynamics of stochastic complex systems from experimental data + + + Tingting Gao, B. Barzel, Gang Yan + 2024-07-17Nature Communications018
visibility_off + Polynomial Chaos-based Stochastic Model Predictive Control: An Overview and Future Research Directions + + + Prabhat Kumar Mishra, J. Paulson, R. Braatz + 2024-06-15ArXiv073
visibility_off + Entropic Regression DMD (ERDMD) Discovers Informative Sparse and Nonuniformly Time Delayed Models + + + Christopher W. Curtis, Erik Bollt, D. J. Alford-Lago + 2024-06-17ArXiv02
visibility_off + Prediction of Unobserved Bifurcation by Unsupervised Extraction of Slowly Time-Varying System Parameter Dynamics from Time Series Using Reservoir Computing + + + Keita Tokuda, Yuichi Katori + 2024-06-20ArXiv010
visibility_off + Machine learning of discrete field theories with guaranteed convergence and uncertainty quantification + + + Christian Offen + 2024-07-10ArXiv00
visibility_off + Data-driven modeling from biased small training data using periodic orbits + + + Kengo Nakai, Yoshitaka Saiki + 2024-07-06ArXiv04
visibility_off + System stabilization with policy optimization on unstable latent manifolds + + + Steffen W. R. Werner, B. Peherstorfer + 2024-07-08ArXiv027
visibility_off + On examining the predictive capabilities of two variants of PINN in validating localised wave solutions in the generalized nonlinear Schr\"{o}dinger equation + + + K. Thulasidharan, N. Sinthuja, N. VishnuPriya, M. Senthilvelan + 2024-07-10ArXiv03
visibility_off + Learning Transformed Dynamics for Efficient Control Purposes + + + C. Ghnatios, Joel Mouterde, Jerome Tomezyk, Joaquim Da Silva, Francisco Chinesta + 2024-07-19Mathematics013
visibility_off + Parameter inference from a non-stationary unknown process + + + Kieran S. Owens, Ben D. Fulcher + 2024-07-12ArXiv01
visibility_off + Limits and Powers of Koopman Learning + + + Matthew J. Colbrook, Igor Mezi'c, Alexei Stepanenko + 2024-07-08ArXiv016
visibility_off + Data-driven optimal prediction with control + + + Aleksandr Katrutsa, Ivan V. Oseledets, Sergey Utyuzhnikov + 2024-06-04ArXiv04
visibility_off + Learning deformable linear object dynamics from a single trajectory + + + Shamil Mamedov, A. R. Geist, Ruan Viljoen, Sebastian Trimpe, Jan Swevers + 2024-07-03ArXiv06
visibility_off + Learning dynamical models from stochastic trajectories + + + Pierre Ronceray + 2024-06-04ArXiv00
visibility_off + Numerical Evidence for Sample Efficiency of Model-Based Over Model-Free Reinforcement Learning Control of Partial Differential Equations + + + Stefan Werner, Sebastian Peitz + 2024-06-252024 European Control Conference (ECC)00
visibility_off + Physics-enhanced Neural Operator for Simulating Turbulent Transport + + + Shengyu Chen, P. Givi, Can Zheng, Xiaowei Jia + 2024-05-31ArXiv031
visibility_off + Fitting micro-kinetic models to transient kinetics of temporal analysis of product reactors using kinetics-informed neural networks + + + Dingqi Nai, G. S. Gusmão, Zachary Kilwein, Fani Boukouvala, A. Medford + 2024-06-20ArXiv040
visibility_off + Solving partial differential equations with sampled neural networks + + + Chinmay Datar, Taniya Kapoor, Abhishek Chandra, Qing Sun, Iryna Burak, Erik Lien Bolager, Anna Veselovska, Massimo Fornasier, Felix Dietrich + 2024-05-31ArXiv04
visibility_off + Active search for Bifurcations + + + Y. M. Psarellis, T. Sapsis, I. G. Kevrekidis + 2024-06-17ArXiv037
visibility_off + Computation and Control of Unstable Steady States for Mean Field Multiagent Systems + + + Sara Bicego, D. Kalise, G. Pavliotis + 2024-06-17ArXiv032
visibility_off + Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics + + + D. V. Cuong, Branislava Lali'c, Mina Petri'c, Binh Nguyen, M. Roantree + 2024-06-07ArXiv017
visibility_off + Combining Neural Networks and Symbolic Regression for Analytical Lyapunov Function Discovery + + + Jie Feng, Haohan Zou, Yuanyuan Shi + 2024-06-21ArXiv00
visibility_off + Reservoir History Matching of the Norne field with generative exotic priors and a coupled Mixture of Experts - Physics Informed Neural Operator Forward Model + + + C. Etienam, Juntao Yang, O. Ovcharenko, Issam Said + 2024-06-02ArXiv04
visibility_off + Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes + + + Peter Zaspel, Michael Günther + 2024-06-26ArXiv02
visibility_off + Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data + + + M. Velioglu, Song Zhai, Sophia Rupprecht, Alexander Mitsos, Andreas Jupke, M. Dahmen + 2024-06-03ArXiv013
visibility_off + Inferring stochastic low-rank recurrent neural networks from neural data + + + Matthijs Pals, A. E. Saugtekin, Felix Pei, Manuel Gloeckler, J. H. Macke + 2024-06-24ArXiv03
visibility_off + Data‐driven variational method for discrepancy modeling: Dynamics with small‐strain nonlinear elasticity and viscoelasticity + + + Arif Masud, Shoaib A. Goraya + 2024-07-04International Journal for Numerical Methods in Engineering03
visibility_off + Modeling Randomly Observed Spatiotemporal Dynamical Systems + + + V. Iakovlev, Harri Lähdesmäki + 2024-06-01ArXiv02
visibility_off + Data-Driven Loewner Matrices-Based Modeling and Model Predictive Control of a Single Machine Infinite Bus Model + + + T. Ionescu, O. Iftime, Ion Necoara + 2024-06-112024 32nd Mediterranean Conference on Control and Automation (MED)011
visibility_off + Nonlinear Data-Driven Moment Matching in Reproducing Kernel Hilbert Spaces + + + Alessio Moreschini, Matteo Scandella, Thomas Parisini + 2024-06-252024 European Control Conference (ECC)02
visibility_off + A Data-Driven Approach to Set-Theoretic Model Predictive Control for Nonlinear Systems + + + Francesco Giannini, Domenico Famularo + 2024-06-23Information00
visibility_off + Sparsifying dimensionality reduction of PDE solution data with Bregman learning + + + T. J. Heeringa, Christoph Brune, Mengwu Guo + 2024-06-18ArXiv01
visibility_off + Model Updating for Nonlinear Systems with Stability Guarantees + + + Farhad Ghanipoor, C. Murguia, Peyman Mohajerin Esfahani, N. Wouw + 2024-06-10ArXiv047
visibility_off + Stochastic modeling of stationary scalar Gaussian processes in continuous time from autocorrelation data + + + Martin Hanke + 2024-06-24Advances in Computational Mathematics00
visibility_off + Pi-fusion: Physics-informed diffusion model for learning fluid dynamics + + + Jing Qiu, Jiancheng Huang, Xiangdong Zhang, Zeng Lin, Minglei Pan, Zengding Liu, F. Miao + 2024-06-06ArXiv120
visibility_off + Random features approximation for control-affine systems + + + Kimia Kazemian, Yahya Sattar, Sarah Dean + 2024-06-10ArXiv01
visibility_off + Physics Based&Machine Learning Methods For Uncertainty Estimation In Turbulence Modeling + + + Minghan Chu + 2024-07-15ArXiv02
visibility_off + Physics and geometry informed neural operator network with application to acoustic scattering + + + S. Nair, Timothy F. Walsh, Greg Pickrell, Fabio Semperlotti + 2024-06-02ArXiv04
visibility_off + Neural Green's Operators for Parametric Partial Differential Equations + + + Hugo Melchers, Joost Prins, Michael Abdelmalik + 2024-06-04ArXiv10
visibility_off + Evolutionary and Sparse Regression Approach for Data-Driven Modelling of an Overhead Crane Dynamics + + + Tom Kusznir, Jarosław Smoczek, Bolesław Karwat + 2024-08-01Advances in Science and Technology Research Journal03
visibility_off + Solving Differential Equations using Physics-Informed Deep Equilibrium Models + + + Bruno Machado Pacheco, E. Camponogara + 2024-06-05ArXiv022
visibility_off + Data-driven discovery of self-similarity using neural networks + + + Ryota Watanabe, Takanori Ishii, Yuji Hirono, Hirokazu Maruoka + 2024-06-06ArXiv00
visibility_off + Tensor networks enable the calculation of turbulence probability distributions + + + Nikita Gourianov, P. Givi, Dieter Jaksch, Stephen B. Pope + 2024-07-12ArXiv031
visibility_off + A software framework for stochastic model predictive control of nonlinear continuous-time systems (GRAMPC-S) + + + D. Landgraf, Andreas Volz, Knut Graichen + 2024-07-12ArXiv02
visibility_off + Knowledge-Guided Learning of Temporal Dynamics and its Application to Gas Turbines + + + Pawel Bielski, Aleksandr Eismont, Jakob Bach, Florian Leiser, D. Kottonau, Klemens Böhm + 2024-05-31Proceedings of the 15th ACM International Conference on Future and Sustainable Energy Systems08
visibility_off + STEP: extraction of underlying physics with robust machine learning + + + Karim K. Alaa El-Din, Alessandro Forte, Muhammad Firmansyah Kasim, Francesco Miniati, Sam M. Vinko + 2024-06-01Royal Society Open Science01
visibility_off + Application of next-generation reservoir computing for predicting chaotic systems from partial observations. + + + Irmantas Ratas, Kestutis Pyragas + 2024-06-01Physical review. E030
visibility_off + Simultaneous System Identification and Model Predictive Control with No Dynamic Regret + + + Hongyu Zhou, Vasileios Tzoumas + 2024-07-04ArXiv019
visibility_off + Structure-preserving formulations for data-driven analysis of coupled multi-physics systems + + + Alba Muixí, David González, Francisco Chinesta, Elías Cueto + 2024-06-07Computational Mechanics013
visibility_off + Analog Data-Driven Theory and Estimation of the Region of Attraction Using Sampled-Data + + + Karthik Shenoy, Arvind Ragghav, V. Chellaboina + 2024-07-11ArXiv030
visibility_off + Approximating the System Behavior with Input Uncertainty Using Big Data + + + Yitao Yan, Jie Bao, Biao Huang + 2024-06-182024 IEEE 18th International Conference on Control & Automation (ICCA)06
visibility_off + From Pixels to Torques with Linear Feedback + + + Jeonghoon Lee, Sam Schoedel, Aditya Bhardwaj, Zachary Manchester + 2024-06-26ArXiv02
visibility_off + CoNO: Complex Neural Operator for Continous Dynamical Physical Systems + + + Karn Tiwari, N. M. A. Krishnan, P. PrathoshA + 2024-06-01ArXiv00
visibility_off + Generalized Inverse Optimal Control and its Application in Biology + + + J. Banga, Sebastian Sager + 2024-05-31ArXiv054
visibility_off + Exponential time differencing for matrix-valued dynamical systems + + + Nayef Shkeir, Tobias Schäfer, T. Grafke + 2024-06-19ArXiv014
visibility_off + Measuring dynamical phase transitions in time series + + + Bulcs'u S'andor, Andr'as Rusu, K'aroly D'enes, M'aria Ercsey-Ravasz, Zs.I. L'az'ar + 2024-07-18ArXiv02
visibility_off + Coupled Stochastic-Statistical Equations for Filtering Multiscale Turbulent Systems + + + Di Qi, Jian-Guo Liu + 2024-07-05ArXiv00
visibility_off + Data-driven model predictive control of battery storage units + + + Johannes B. Lipka, Christian A. Hans + 2024-07-06ArXiv00
visibility_off + Assessment of Uncertainty Quantification in Universal Differential Equations + + + Nina Schmid, David Fernandes del Pozo, Willem Waegeman, Jan Hasenauer + 2024-06-13ArXiv00
visibility_off + Exploring localization in nonlinear oscillator systems through network-based predictions + + + Charlotte Geier, Norbert Hoffmann . Hamburg University of Technology, I. -. London + 2024-07-07ArXiv030
visibility_off + A Structure-Preserving Domain Decomposition Method for Data-Driven Modeling + + + Shuai Jiang, Jonas A. Actor, Scott A. Roberts, Nathaniel Trask + 2024-06-08ArXiv04
visibility_off + Recursive Least Squares-Based Identification for Multi-Step Koopman Operators + + + Omar Sayed, Sergio Lucia + 2024-06-252024 European Control Conference (ECC)11
visibility_off + How Inductive Bias in Machine Learning Aligns with Optimality in Economic Dynamics + + + Mahdi Ebrahimi Kahou, James Yu, Jesse Perla, Geoff Pleiss + 2024-06-04ArXiv02
visibility_off + Predicting AI Agent Behavior through Approximation of the Perron-Frobenius Operator + + + Shiqi Zhang, D. Gadginmath, Fabio Pasqualetti + 2024-06-04ArXiv03
visibility_off + Gradient matching accelerates mixed-effects inference for biochemical networks + + + Yulan B van Oppen, Andreas Milias-Argeitis + 2024-06-12bioRxiv015
visibility_off + Optimal Reconstruction of Vector Fields from Data for Prediction and Uncertainty Quantification + + + Sean P. McGowan, William S. P. Robertson, Chantelle Blachut, Sanjeeva Balasuriya + 2024-06-13J. Nonlinear Sci.018
visibility_off + Comparative Evaluation of Learning Models for Bionic Robots: Non-Linear Transfer Function Identifications + + + Po-Yu Hsieh, June-Hao Hou + 2024-07-02ArXiv00
visibility_off + Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction + + + Christoph Jurgen Hemmer, Manuel Brenner, Florian Hess, Daniel Durstewitz + 2024-06-07ArXiv03
visibility_off + Bayesian Entropy Neural Networks for Physics-Aware Prediction + + + R. Rathnakumar, Jiayu Huang, Hao Yan, Yongming Liu + 2024-07-01ArXiv03
visibility_off + Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods + + + Mingtao Xia, Xiangting Li, Qijing Shen, Tom Chou + 2024-06-03Journal of Applied Mathematics and Computing09
visibility_off + Transport Map Coupling Filter for State-Parameter Estimation + + + J. Grashorn, M. Broggi, Ludovic Chamoin, Michael Beer + 2024-07-02ArXiv021
visibility_off + Reconstructing dynamical systems as zero-noise limits + + + Suddhasattwa Das + 2024-07-23ArXiv00
visibility_off + Increasing certainty in systems biology models using Bayesian multimodel inference + + + Nathaniel Linden-Santangeli, Jin Zhang, Boris Kramer, P. Rangamani + 2024-06-17bioRxiv04
visibility_off + On the importance of learning non-local dynamics for stable data-driven climate modeling: A 1D gravity wave-QBO testbed + + + H. Pahlavan, P. Hassanzadeh, M. J. Alexander + 2024-07-07ArXiv024
visibility_off + Memory Regressor Extended Echo State Networks for Nonlinear Dynamics Modeling + + + Kai Hu, Qian Wang, Tian Shi, Kohei Nakajima, Yongping Pan + 2024-06-252024 European Control Conference (ECC)02
visibility_off + Identifying latent state transition in non-linear dynamical systems + + + cCauglar Hizli, cCaugatay Yildiz, Matthias Bethge, ST John, Pekka Marttinen + 2024-06-05ArXiv02
visibility_off + Data‐driven nonlinear state observation for controlled systems: A kernel method and its analysis + + + Moritz Woelk, Wentao Tang + 2024-07-08The Canadian Journal of Chemical Engineering01
visibility_off + Time-Domain Iterative Rational Krylov Method + + + Michael S. Ackermann, S. Gugercin + 2024-07-17ArXiv038
visibility_off + Koopman Resolvents of Nonlinear Discrete-Time Systems: Formulation and Identification + + + Yoshihiko Susuki, A. Mauroy, Z. Drmač + 2024-06-252024 European Control Conference (ECC)020
visibility_off + Realizability-Informed Machine Learning for Turbulence Anisotropy Mappings + + + R. McConkey, Eugene Yee, F. Lien + 2024-06-17ArXiv036
visibility_off + On the Cyclostationary Linear Inverse Models: A Mathematical Insight and Implication + + + Justin Lien, Yan-Ning Kuo, Hiroyasu Ando + 2024-07-15ArXiv00
visibility_off + A Regularized Physics-Informed Neural Network to Support Data-Driven Nonlinear Constrained Optimization + + + Diego Armando Perez-Rosero, A. Álvarez-Meza, C. Castellanos-Dominguez + 2024-07-18Computers015
visibility_off + Dynamic Mode Decomposition for Individualized Model Predictive Control with Application to Type 1 Diabetes + + + Valentina Becchetti, Mohab M. H. Atanasious, Danilo Menegatti, Federico Baldisseri, Alessandro Giuseppi + 2024-06-112024 32nd Mediterranean Conference on Control and Automation (MED)015
visibility_off + A meshless method to compute the proper orthogonal decomposition and its variants from scattered data + + + Iacopo Tirelli, M. A. Mendez, A. Ianiro, S. Discetti + 2024-07-03ArXiv024
visibility_off + Dynamical Measure Transport and Neural PDE Solvers for Sampling + + + Jingtong Sun, Julius Berner, Lorenz Richter, Marius Zeinhofer, Johannes Muller, K. Azizzadenesheli, A. Anandkumar + 2024-07-10ArXiv031
visibility_off + Bridging pharmacology and neural networks: A deep dive into neural ordinary differential equations. + + + Idris Bachali Losada, N. Terranova + 2024-07-11CPT: pharmacometrics & systems pharmacology012
visibility_off + Data-driven Bayesian State Estimation with Compressed Measurement of Model-free Process using Semi-supervised Learning + + + Anubhab Ghosh, Y. Eldar, Saikat Chatterjee + 2024-07-10ArXiv026
visibility_off + Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks + + + Spyros Rigas, M. Papachristou, Theofilos Papadopoulos, Fotios Anagnostopoulos, Georgios Alexandridis + 2024-07-24ArXiv01
visibility_off + From Data to Predictive Control: A Framework for Stochastic Linear Systems with Output Measurements + + + Haldun Balim, Andrea Carron, M. Zeilinger, Johannes Kohler + 2024-07-24ArXiv035
visibility_off + Data-Driven Model Reduction by Moment Matching for Linear Systems Driven by an Unknown Implicit Signal Generator + + + Debraj Bhattacharjee, Alessandro Astolfi + 2024-06-252024 European Control Conference (ECC)01
visibility_off + Kolmogorov Arnold Informed neural network: A physics-informed deep learning framework for solving PDEs based on Kolmogorov Arnold Networks + + + Yizheng Wang, Jia Sun, Jinshuai Bai, C. Anitescu, M. Eshaghi, X. Zhuang, T. Rabczuk, Yinghua Liu + 2024-06-16ArXiv769
visibility_off + Computing Nonequilibrium Responses with Score-shifted Stochastic Differential Equations + + + J'er'emie Klinger, Grant M. Rotskoff + 2024-06-20ArXiv024
visibility_off + Predictability of weakly turbulent systems from spatially sparse observations using data assimilation and machine learning + + + Vikrant Gupta, Yuanqing Chen, Minping Wan + 2024-07-14ArXiv01
visibility_off + From high-dimensional committors to reactive insights + + + Nils E. Strand, Schuyler B. Nicholson, Hadrien Vroylandt, Todd R. Gingrich + 2024-06-03ArXiv017
visibility_off + From Biased to Unbiased Dynamics: An Infinitesimal Generator Approach + + + Timothée Devergne, Vladimir Kostic, Michele Parrinello, Massimiliano Pontil + 2024-06-13ArXiv01
visibility_off + Refining Potential Energy Surface through Dynamical Properties via Differentiable Molecular Simulation + + + Bin Han, Kuang Yu + 2024-06-26ArXiv00
visibility_off + Physics-Informed Critic in an Actor-Critic Reinforcement Learning for Swimming in Turbulence + + + Christopher Koh, Laurent Pagnier, Michael Chertkov + 2024-06-05ArXiv07
visibility_off + Automated Data-Driven Tuning of Learning-Based Model Predictive Control (SelfMPC): A Maximum-Likelihood Approach + + + Guitao Yang, Matteo Scandella, Simone Formentin, Thomas Parisini + 2024-06-252024 European Control Conference (ECC)05
visibility_off + Stochastic Neural Simulator for Generalizing Dynamical Systems across Environments + + + Liu Jiaqi, Jiaxu Cui, Jiayi Yang, Bo Yang + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence00
visibility_off + Disturbance Observer for Estimating Coupled Disturbances + + + Jindou Jia, Yuhang Liu, Kexin Guo, Xiang Yu, Lihua Xie, Lei Guo + 2024-07-18ArXiv016
visibility_off + Data-Driven State Estimation for Linear Systems + + + Vikas Kumar Mishra, S. Hiremath, N. Bajçinca + 2024-06-252024 European Control Conference (ECC)015
visibility_off + Identifying the onset and decay of quasi-stationary families of almost-invariant sets with an application to atmospheric blocking events + + + Aleksandar Badza, Gary Froyland School of Mathematics, Statistics Unsw Sydney Nsw Australia + 2024-07-09ArXiv00
visibility_off + Learning Optimal Filters Using Variational Inference + + + Enoch Luk, Eviatar Bach, Ricardo Baptista, Andrew Stuart + 2024-06-26ArXiv09
visibility_off + Learnable & Interpretable Model Combination in Dynamic Systems Modeling + + + Tobias Thummerer, Lars Mikelsons + 2024-06-12ArXiv011
visibility_off + Data-driven approximations of topological insulator systems + + + Justin T. Cole, Michael J. Nameika + 2024-07-01ArXiv00
visibility_off + DeltaPhi: Learning Physical Trajectory Residual for PDE Solving + + + Xihang Yue, Linchao Zhu, Yi Yang + 2024-06-14ArXiv041
visibility_off + All‐nonlinear static‐dynamic neural networks versus Bayesian machine learning for data‐driven modelling of chemical processes + + + Angan Mukherjee, Samuel Adeyemo, D. Bhattacharyya + 2024-06-24The Canadian Journal of Chemical Engineering029
visibility_off + Online learning of Koopman operator using streaming data from different dynamical regimes + + + Kartik Loya, Phanindra Tallapragada + 2024-07-18ArXiv016
visibility_off + Learning to Approximate Particle Smoothing Trajectories via Diffusion Generative Models + + + Ella Tamir, Arno Solin + 2024-06-01ArXiv02
visibility_off + Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs + + + Shahed Rezaei, Reza Najian Asl, Kianoosh Taghikhani, Ahmad Moeineddin, Michael Kaliske, Markus Apel + 2024-07-04ArXiv018
visibility_off + Gaussian approximation of dynamic cavity equations for linearly-coupled stochastic dynamics + + + Mattia Tarabolo, Luca Dall'Asta + 2024-06-20ArXiv01
visibility_off + Extended dynamic mode decomposition for model reduction in fluid dynamics simulations + + + G. Libero, Alessia Chiofalo, V. Ciriello, D. Tartakovsky + 2024-06-01Physics of Fluids047
visibility_off + Inference for Delay Differential Equations Using Manifold-Constrained Gaussian Processes + + + Yuxuan Zhao, Samuel W. K. Wong + 2024-06-21ArXiv01
visibility_off + Mapping dynamical systems into chemical reactions + + + Tomislav Plesa + 2024-06-05ArXiv07
visibility_off + PECCARY: A novel approach for characterizing orbital complexity, stochasticity, and regularity + + + S'oley 'O. Hyman, Kathryne J. Daniel, David A. Schaffner + 2024-07-16ArXiv00
visibility_off + Score-fPINN: Fractional Score-Based Physics-Informed Neural Networks for High-Dimensional Fokker-Planck-Levy Equations + + + Zheyuan Hu, Zhongqiang Zhang, G. Karniadakis, Kenji Kawaguchi + 2024-06-17ArXiv0127
visibility_off + mochi_class: Modelling Optimisation to Compute Horndeski In class + + + Matteo Cataneo, Emilio Bellini + 2024-07-16ArXiv00
visibility_off + Linearization Turns Neural Operators into Function-Valued Gaussian Processes + + + Emilia Magnani, Marvin Pförtner, Tobias Weber, Philipp Hennig + 2024-06-07ArXiv03
visibility_off + A Low Rank Neural Representation of Entropy Solutions + + + Donsub Rim, Gerrit Welper + 2024-06-09ArXiv09
visibility_off + Data-driven Power Flow Linearization: Theory + + + Mengshuo Jia, Gabriela Hug, Ning Zhang, Zhaojian Wang, Yi Wang, Chongqing Kang + 2024-06-10ArXiv031
visibility_off + Causality-enhanced Discreted Physics-informed Neural Networks for Predicting Evolutionary Equations + + + Ye Li, Siqi Chen, Bin Shan, + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence01
visibility_off + Comparing Neural Network and Linear Models in Economic MPC: Insights from BOPTEST for Building Temperature Control + + + François Gauthier-Clerc, Hoel Le Capitaine, F. Claveau, P. Chevrel + 2024-06-252024 European Control Conference (ECC)020
visibility_off + Dynamical analysis of a parameter-aware reservoir computer + + + Dishant Sisodia, S. Jalan + 2024-07-20ArXiv026
visibility_off + From Data to Control: A Two-Stage Simulation-Based Approach + + + Federico Dettù, Braghadeesh Lakshminarayanan, Simone Formentin, Cristian R. Rojas + 2024-06-252024 European Control Conference (ECC)03
visibility_off + On Computation of Approximate Solutions to Large-Scale Backstepping Kernel Equations via Continuum Approximation + + + Jukka-Pekka Humaloja, N. Bekiaris-Liberis + 2024-06-19ArXiv031
visibility_off + Turbulence Closure Modeling with Machine Learning: A Foundational Physics Perspective + + + S. Girimaji + 2024-07-23New Journal of Physics042
visibility_off + Nonlinear Model Predictive Control with Evolutionary Data-Driven Prediction Model and Particle Swarm Optimization Optimizer for an Overhead Crane + + + Tom Kusznir, Jarosław Smoczek + 2024-06-12Applied Sciences03
visibility_off + Dynamical mixture modeling with fast, automatic determination of Markov chains + + + Christopher E Miles, Robert J. Webber + 2024-06-07ArXiv08
visibility_off + Efficient gPC-based quantification of probabilistic robustness for systems in neuroscience + + + Uros Sutulovic, Daniele Proverbio, Rami Katz, Giulia Giordano + 2024-06-19ArXiv00
visibility_off + Markovian Gaussian Process: A Universal State-Space Representation for Stationary Temporal Gaussian Process + + + Weihan Li, Yule Wang, Chengrui Li, Anqi Wu + 2024-06-29ArXiv01
visibility_off + On Entropic Learning from Noisy Time Series in the Small Data Regime + + + Davide Bassetti, Lukáš Pospíšil, I. Horenko + 2024-06-28Entropy026
visibility_off + Reducing phenotype-structured PDE models of cancer evolution to systems of ODEs: a generalised moment dynamics approach + + + Chiara Villa, P. K. Maini, Alexander P Browning, A. Jenner, Sara Hamis, Tyler Cassidy + 2024-06-03ArXiv026
visibility_off + Learning dynamical behaviors in physical systems + + + R. Mandal, Rosalind Huang, Michel Fruchart, P. Moerman, Suriyanarayanan Vaikuntanathan, Arvind Murugan, Vincenzo Vitelli + 2024-06-12ArXiv025
visibility_off + Learning Iterative Solvers for Accurate and Fast Nonlinear Model Predictive Control via Unsupervised Training + + + Lukas Lüken, Sergio Lucia + 2024-06-252024 European Control Conference (ECC)02
visibility_off + Approximations in Mean Square Analysis of Stochastically Forced Equilibria for Nonlinear Dynamical Systems + + + I. Bashkirtseva + 2024-07-13Mathematics026
visibility_off + Perspectives on computational modeling of biological systems and the significance of the SysMod community + + + B. L. Puniya, Meghna Verma, Chiara Damiani, Shaimaa Bakr, Andreas Dräger + 2024-06-26Bioinformatics Advances011
visibility_off + Nonlinear Optimal Control Based on FBDEs and its Application to AGV. + + + Chuanzhi Lv, Hongdan Li, Huanshui Zhang, Minyue Fu + 2024-07-19IEEE transactions on cybernetics05
visibility_off + Application of physics encoded neural networks to improve predictability of properties of complex multi-scale systems + + + M. Meinders, Jack Yang, Erik van der Linden + 2024-07-01Scientific Reports029
visibility_off + A Distributed Neural Hybrid System Learning Framework in Modeling Complex Dynamical Systems. + + + Yejiang Yang, Tao Wang, Weiming Xiang + 2024-06-28IEEE transactions on neural networks and learning systems02
visibility_off + Snapshot-driven Rational Interpolation of Parametric Systems + + + Art J. R. Pelling, Karim Cherifi, I. V. Gosea, E. Sarradj + 2024-06-03ArXiv025
visibility_off + Handling of Time Delays in MISO Processes with Regularized Finite Impulse Response Models + + + Christopher Illg, Tarek Kösters, Oliver Nelles + 2024-06-252024 European Control Conference (ECC)02
visibility_off + Waddington landscape for prototype learning in generalized Hopfield networks + + + Nacer Eddine Boukacem, Allen Leary, Robin Thériault, Felix Gottlieb, Madhav Mani, Paul François + 2024-07-23Physical Review Research01
visibility_off + VS-PINN: A Fast and efficient training of physics-informed neural networks using variable-scaling methods for solving PDEs with stiff behavior + + + Seungchan Ko, Sang Hyeon Park + 2024-06-10ArXiv00
visibility_off + Continuous time Stochastic optimal control under discrete time partial observations + + + Christian Bayer, Boualem Djehiche, Eliza Rezvanova, Raúl Tempone + 2024-07-25ArXiv024
visibility_off + Error Analysis and Numerical Algorithm for PDE Approximation with Hidden-Layer Concatenated Physics Informed Neural Networks + + + Yianxia Qian, Yongchao Zhang, Suchuan Dong + 2024-06-10ArXiv02
visibility_off + Tube MPC via flatness for multicopter trajectory tracking + + + H. Do, I. Prodan + 2024-06-252024 European Control Conference (ECC)017
visibility_off + Time-series-analysis-based detection of critical transitions in real-world non-autonomous systems. + + + Klaus Lehnertz + 2024-06-07Chaos00
visibility_off + Oscillations enhance time-series prediction in reservoir computing with feedback + + + Yuji Kawai, Takashi Morita, Jihoon Park, Minoru Asada + 2024-06-05ArXiv07
visibility_off + HDNet: Physics-Inspired Neural Network for Flow Estimation based on Helmholtz Decomposition + + + Miao Qi, R. Idoughi, Wolfgang Heidrich + 2024-06-12ArXiv012
visibility_off + Recurrent Stochastic Configuration Networks for Temporal Data Analytics + + + Dianhui Wang, Gang Dang + 2024-06-21ArXiv11
visibility_off + Training Dynamics of Nonlinear Contrastive Learning Model in the High Dimensional Limit + + + Lineghuan Meng, Chuang Wang + 2024-06-11ArXiv00
visibility_off + A physics-constrained and data-driven method for modeling supersonic flow + + + Tong Zhao, Jian An, Yuming Xu, Guoqiang He, Fei Qin + 2024-06-01Physics of Fluids00
visibility_off + Group Projected Subspace Pursuit for Block Sparse Signal Reconstruction: Convergence Analysis and Applications + + + Roy Y. He, Haixia Liu, Hao L'iu + 2024-06-01ArXiv00
visibility_off + On the estimation rate of Bayesian PINN for inverse problems + + + Yi Sun, Debarghya Mukherjee, Yves Atchadé + 2024-06-21ArXiv07
visibility_off + Approximate solutions of a general stochastic velocity-jump process subject to discrete-time noisy observations + + + Arianna Ceccarelli, Alexander P. Browning, Ruth E. Baker + 2024-06-28ArXiv00
visibility_off + Data-Driven Prognostics with Multi-Layer Perceptron Particle Filter: a Cross-Industry Exploration + + + Francesco Canceliere, Sylvain Girard, Jean-Marc Bourinet + 2024-06-27PHM Society European Conference015
visibility_off + An Understanding of Principal Differential Analysis + + + Edward Gunning, Giles Hooker + 2024-06-26ArXiv03
visibility_off + Stability and Generalizability in SDE Diffusion Models with Measure-Preserving Dynamics + + + Weitong Zhang, Chengqi Zang, Liu Li, Sarah Cechnicka, Ouyang Cheng, Bernhard Kainz + 2024-06-19ArXiv01
visibility_off + Constructing coarse-grained models with physics-guided Gaussian process regression + + + Yating Fang, Qian Qian Zhao, R. Sills, A. Ezzat + 2024-06-01APL Machine Learning019
visibility_off + Improving Transfer Time Prediction of ML Models via Auto-correcting Dynamical Systems Modeling + + + Venkat Sai Suman Lamba Karanam, B. Ramamurthy + 2024-06-242024 IEEE 10th International Conference on Network Softwarization (NetSoft)038
visibility_off + Learning the Hodgkin-Huxley Model with Operator Learning Techniques + + + Edoardo Centofanti, Massimiliano Ghiotto, L. Pavarino + 2024-06-04ArXiv020
visibility_off + Variational Potential Flow: A Novel Probabilistic Framework for Energy-Based Generative Modelling + + + J. Loo, Michelle Adeline, Arghya Pal, Vishnu Monn Baskaran, Chee-Ming Ting, Raphaël C.-W. Phan + 2024-07-21ArXiv010
visibility_off + Nonlinear Eigen-approach ADMM for Sparse Optimization on Stiefel Manifold + + + Jiawei Wang, Rencang Li, Richard Yi Da Xu + 2024-06-04ArXiv00
visibility_off + Dynamical Mean-Field Theory of Self-Attention Neural Networks + + + Ángel Poc-López, Miguel Aguilera + 2024-06-11ArXiv01
visibility_off + PhyGICS – A Physics-informed Graph Neural Network-based Intelligent HVAC Controller for Open-plan Spaces + + + S. Nagarathinam, Arunchandar Vasan + 2024-05-31Proceedings of the 15th ACM International Conference on Future and Sustainable Energy Systems015
visibility_off + A Bayesian optimization approach for data‐driven mixed‐integer nonlinear programming problems + + + Javier Morlet-Espinosa, A. Flores‐Tlacuahuac + 2024-06-04AIChE Journal029
visibility_off + Physics-Informed Geometric Operators to Support Surrogate, Dimension Reduction and Generative Models for Engineering Design + + + Shahroz Khan, Zahid Masood, Muhammad Usama, Konstantinos V. Kostas, P. Kaklis, Wei Chen + 2024-07-10ArXiv021
visibility_off + An approach to non-equilibrium statistical physics using variational Bayesian inference + + + M. Ramstead, D. A. R. Sakthivadivel, K. Friston + 2024-06-17ArXiv023
visibility_off + Accelerating wavepacket propagation with machine learning. + + + Kanishka Singh, Ka Hei Lee, Daniel Peláez, A. Bande + 2024-06-21Journal of computational chemistry012
visibility_off + Towards Universal Unfolding of Detector Effects in High-Energy Physics using Denoising Diffusion Probabilistic Models + + + Camila Pazos, Shuchin Aeron, P. Beauchemin, Vincent Croft, Martin Klassen, Taritree Wongjirad + 2024-06-03ArXiv041
visibility_off + The Internal Model Principle of Time-Varying Optimization + + + G. Bianchin, Bryan Van Scoy + 2024-07-10ArXiv011
visibility_off + Inverse stochastic resonance in adaptive small-world neural networks + + + Marius E. Yamakou, Jinjie Zhu, Erik A. Martens + 2024-07-03ArXiv19
visibility_off + Dynamical Analysis and Synchronization of Complex Network Dynamic Systems under Continuous-Time + + + Rui Yang, Huaigu Tian, Zhen Wang, Wei Wang, Yang Zhang + 2024-06-04Symmetry06
visibility_off + Learning metabolic dynamics from irregular observations by Bidirectional Time-Series State Transfer Network. + + + Shaohua Xu, Ting Xu, Yuping Yang, Xin Chen + 2024-07-26mSystems00
visibility_off + Recurrent neural chemical reaction networks that approximate arbitrary dynamics + + + Alexander Dack, Benjamin Qureshi, T. Ouldridge, Tomislav Plesa + 2024-06-05ArXiv032
visibility_off + Sobolev neural network with residual weighting as a surrogate in linear and non-linear mechanics + + + A.O.M. Kilicsoy, J. Liedmann, M. Valdebenito, F. Barthold, M. Faes + 2024-07-23ArXiv023
visibility_off + Complex harmonics reveal low-dimensional manifolds of critical brain dynamics + + + G. Deco, Y. Perl, M. Kringelbach + 2024-06-16bioRxiv013
visibility_off + Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging + + + N. Zakariaei, Arman Rahmim, Eldad Haber + 2024-05-31ArXiv03
visibility_off + A variational deep-learning approach to modeling memory T cell dynamics + + + C. V. van Dorp, Joshua I. Gray, Daniel H. Paik, Donna L. Farber, Andrew J. Yates + 2024-07-11bioRxiv010
visibility_off + Astral: training physics-informed neural networks with error majorants + + + V. Fanaskov, Tianchi Yu, Alexander Rudikov, I. Oseledets + 2024-06-04ArXiv03
visibility_off + Cross Validation in Stochastic Analytic Continuation + + + Gabe Schumm, Sibin Yang, Anders Sandvik + 2024-06-10ArXiv00
visibility_off + Machine Learning Methods for Pricing Financial Derivatives + + + Lei Fan, Justin A. Sirignano + 2024-06-01ArXiv016
visibility_off + The dynamics of machine-learned"softness"in supercooled liquids describe dynamical heterogeneity + + + S. Ridout, Andrea J. Liu + 2024-06-09ArXiv08
visibility_off + Symplectic Neural Gaussian Processes for Meta-learning Hamiltonian Dynamics + + + Tomoharu Iwata, Yusuke Tanaka + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence07
visibility_off + A Generative Approach to Control Complex Physical Systems + + + Long Wei, Peiyan Hu, Ruiqi Feng, Haodong Feng, Yixuan Du, Tao Zhang, Rui Wang, Yue Wang, Zhi-Ming Ma, Tailin Wu + 2024-07-09ArXiv03
visibility_off + Operator learning based on sparse high-dimensional approximation + + + Daniel Potts, Fabian Taubert + 2024-06-06ArXiv01
visibility_off + Data-driven exploration of swarmalators with second-order harmonics. + + + R. Senthamizhan, R. Gopal, V. K. Chandrasekar + 2024-06-01Physical review. E023
visibility_off + Efficient Sampling for Data-Driven Frequency Stability Constraint via Forward-Mode Automatic Differentiation + + + Wangkun Xu, Qian Chen, Pudong Ge, Zhongda Chu, Fei Teng + 2024-07-21ArXiv07
visibility_off + Data-driven learning of structure augments quantitative prediction of biological responses + + + Yuanchi Ha, Helena R. Ma, Feilun Wu, Andrea Weiss, Katherine Duncker, Helen Xu, Jia Lu, Max Golovsky, Daniel Reker, Lingchong You + 2024-06-01PLOS Computational Biology08
visibility_off + Structural Exploitation for the Homogeneous Reformulation of Model Predictive Control Problems + + + Jonas Hall, A. Raghunathan + 2024-06-252024 European Control Conference (ECC)029
visibility_off + Quadratic Basis Pursuit in Model Updating of Underconstrained Problems + + + Dionisio Bernal, M. D. Ulriksen + 2024-06-01Journal of Physics: Conference Series010
visibility_off + Synchronized Optimal Transport for Joint Modeling of Dynamics Across Multiple Spaces + + + Zixuan Cang, Yanxiang Zhao + 2024-06-05ArXiv017
visibility_off + Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning + + + Michal Derezi'nski, Michael W. Mahoney + 2024-06-17ArXiv00
visibility_off + Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models + + + Zun Wang, Chang Liu, Nianlong Zou, He Zhang, Xinran Wei, Lin Huang, Lijun Wu, Bin Shao + 2024-06-06ArXiv06
visibility_off + Pseudomode expansion of many-body correlation functions + + + Alexander Teretenkov, F. Uskov, Oleg Lychkovskiy + 2024-07-17ArXiv03
visibility_off + Data-driven strategy synthesis for stochastic systems with unknown nonlinear disturbances + + + Ibon Gracia, Dimitris Boskos, Luca Laurenti, Morteza Lahijanian + 2024-06-14ArXiv017
visibility_off + Multi-Model Predictive Attitude Control of Quadrotors + + + Mohammadreza Izadi, Zeinab Shayan, R. Faieghi + 2024-06-21ArXiv03
visibility_off + Bayesian Occam’s Razor to Optimize Models for Complex Systems + + + Chenxi Wang, Jihui Zhao, Jingjing Zheng, Barak Raveh, Xuming He, Liping Sun + 2024-06-02bioRxiv09
visibility_off + Exploring transient neurophysiological states through local and time-varying measures of Information Dynamics + + + Y. Antonacci, C. Barà, G. De Felice, A. Sferlazza, R. Pernice, L. Faes + 2024-06-24bioRxiv020
visibility_off + Full Lyapunov Exponents spectrum with Deep Learning from single-variable time series + + + C. Mayora-Cebollero, A. Mayora-Cebollero, 'Alvaro Lozano, Roberto Barrio + 2024-06-23ArXiv01
visibility_off + Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior + + + Anming Gu, Edward Chien, K. Greenewald + 2024-06-11ArXiv020
visibility_off + Large sampling intervals for learning and predicting chaotic systems with reservoir computing + + + Qingyan Xie, Zixiang Yan, Hui Zhao, Jian Gao, Jinghua Xiao + 2024-06-28Journal of Physics A: Mathematical and Theoretical01
visibility_off + An Efficient High-dimensional Gradient Estimator for Stochastic Differential Equations + + + Shengbo Wang, Jose Blanchet, Peter Glynn + 2024-07-14ArXiv04
visibility_off + Most probable escape paths in perturbed gradient systems + + + Katherine Slyman, Mackenzie Simper, John A Gemmer, Bjorn Sandstede + 2024-07-25ArXiv07
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
+

+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ + + +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + \ No newline at end of file diff --git a/Time-series forecasting/index.html b/Time-series forecasting/index.html new file mode 100644 index 00000000..53ed62bd --- /dev/null +++ b/Time-series forecasting/index.html @@ -0,0 +1,5249 @@ + + + + + + + + + + + + + + + + + + + + + + + + + +Literature Survey (VPE) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + + + + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

Time-series forecasting

+ + + + + + + + +

+ This page was last updated on 2024-07-29 06:05:24 UTC +

+ +
+

+ +

+
+ + + +
+

+

Manually curated articles on Time-series forecasting

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index + View recommendations +
visibility_off + A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection + + + Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, C. Alippi, G. I. Webb, Irwin King, Shirui Pan + 2023-07-07arXiv.org, ArXiv5649 + open_in_new +
visibility_off + Graph-Guided Network for Irregularly Sampled Multivariate Time Series + + + Xiang Zhang, M. Zeman, Theodoros Tsiligkaridis, M. Zitnik + 2021-10-11International Conference on Learning Representations, ArXiv6646 + open_in_new +
visibility_off + Taming Local Effects in Graph-based Spatiotemporal Forecasting + + + Andrea Cini, Ivan Marisca, Daniele Zambon, C. Alippi + 2023-02-08Neural Information Processing Systems, ArXiv1549 + open_in_new +
visibility_off + Sparse Graph Learning from Spatiotemporal Time Series + + + Andrea Cini, Daniele Zambon, C. Alippi + 2022-05-26Journal of machine learning research, J. Mach. Learn. Res.1049 + open_in_new +
visibility_off + Large Language Models Are Zero-Shot Time Series Forecasters + + + Nate Gruver, Marc Finzi, Shikai Qiu, Andrew Gordon Wilson + 2023-10-11Neural Information Processing Systems, ArXiv11414 + open_in_new +
visibility_off + Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces + + + Chloe X. Wang, Oleksii Tsepa, Jun Ma, Bo Wang + 2024-02-01arXiv.org, ArXiv447 + open_in_new +
visibility_off + A decoder-only foundation model for time-series forecasting + + + Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhou + 2023-10-14arXiv.org, ArXiv4314 + open_in_new +
visibility_off + Unified Training of Universal Time Series Forecasting Transformers + + + Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, Doyen Sahoo + 2024-02-04arXiv.org, ArXiv2622 + open_in_new +
visibility_off + Time-LLM: Time Series Forecasting by Reprogramming Large Language Models + + + Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, X. Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, Qingsong Wen + 2023-10-03arXiv.org, ArXiv1089 + open_in_new +
visibility_off + Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency + + + Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, M. Zitnik + 2022-06-17Neural Information Processing Systems, ArXiv15346 + open_in_new +
visibility_off + Domain Adaptation for Time Series Under Feature and Label Shifts + + + Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, M. Zitnik + 2023-02-06DBLP, ArXiv2246 + open_in_new +
visibility_off + AZ-whiteness test: a test for signal uncorrelation on spatio-temporal graphs + + + Daniele Zambon, C. Alippi + NoneDBLP649 + open_in_new +
visibility_off + Graph state-space models + + + Daniele Zambon, Andrea Cini, L. Livi, C. Alippi + 2023-01-04arXiv.org, ArXiv349 + open_in_new +
visibility_off + UNITS: A Unified Multi-Task Time Series Model + + + Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, M. Zitnik + 2024-02-29ArXiv246 + open_in_new +
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-indexView recommendations
+

+
+ +
+

+

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
visibility_off + TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment + + + Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, Rui Zhao + 2024-06-03ArXiv24
visibility_off + WindowMixer: Intra-Window and Inter-Window Modeling for Time Series Forecasting + + + Quangao Liu, Ruiqi Li, Maowei Jiang, Wei Yang, Chen Liang, Longlong Pang, Zhuozhang Zou + 2024-06-14ArXiv01
visibility_off + Deep Time Series Models: A Comprehensive Survey and Benchmark + + + Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, Jianmin Wang + 2024-07-18ArXiv065
visibility_off + Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting + + + Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodríguez, Chao Zhang, B. A. Prakash + 2024-07-02ArXiv09
visibility_off + UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting + + + Juncheng Liu, Chenghao Liu, Gerald Woo, Yiwei Wang, Bryan Hooi, Caiming Xiong, Doyen Sahoo + 2024-06-07ArXiv022
visibility_off + SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces + + + Jinhyeok Choi, Heehyeon Kim, Minhyeong An, Joyce Jiyoung Whang + 2024-06-17ArXiv01
visibility_off + SiamTST: A Novel Representation Learning Framework for Enhanced Multivariate Time Series Forecasting applied to Telco Networks + + + S. Kristoffersen, Peter Skaar Nordby, Sara Malacarne, Massimiliano Ruocco, Pablo Ortiz + 2024-07-02ArXiv00
visibility_off + MSegRNN:Enhanced SegRNN Model with Mamba for Long-Term Time Series Forecasting + + + Gaoxiang Zhao, Xiaoqiang Wang + 2024-07-15ArXiv00
visibility_off + xLSTMTime : Long-term Time Series Forecasting With xLSTM + + + Musleh Alharthi, Ausif Mahmood + 2024-07-14ArXiv00
visibility_off + A Scalable and Effective Alternative to Graph Transformers + + + Kaan Sancak, Zhigang Hua, Jin Fang, Yan Xie, Andrey Malevich, Bo Long, M. F. Balin, Ümit V. Çatalyürek + 2024-06-17ArXiv06
visibility_off + Sparse transformer with local and seasonal adaptation for multivariate time series forecasting + + + Yifan Zhang, Rui Wu, S. Dascalu, Frederick C. Harris + 2023-12-11Scientific Reports018
visibility_off + C-Mamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting + + + Chaolv Zeng, Zhanyu Liu, Guanjie Zheng, Linghe Kong + 2024-06-08ArXiv15
visibility_off + Toto: Time Series Optimized Transformer for Observability + + + Ben Cohen, E. Khwaja, Kan Wang, Charles Masson, Elise Ram'e, Youssef Doubli, Othmane Abou-Amal + 2024-07-10ArXiv04
visibility_off + Understanding Different Design Choices in Training Large Time Series Models + + + Yu-Neng Chuang, Songchen Li, Jiayi Yuan, Guanchu Wang, Kwei-Herng Lai, Leisheng Yu, Sirui Ding, Chia-yuan Chang, Qiaoyu Tan, D. Zha, Xia Hu + 2024-06-20ArXiv122
visibility_off + DAM: Towards A Foundation Model for Time Series Forecasting + + + Luke Darlow, Qiwen Deng, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Artjom Joosen, Adam Barker, A. Storkey + 2024-07-25ArXiv043
visibility_off + DeformTime: Capturing Variable Dependencies with Deformable Attention for Time Series Forecasting + + + Yuxuan Shu, Vasileios Lampos + 2024-06-11ArXiv024
visibility_off + What Can We Learn from State Space Models for Machine Learning on Graphs? + + + Yinan Huang, Siqi Miao, Pan Li + 2024-06-09ArXiv02
visibility_off + Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing + + + Egon Pervsak, Miguel F. Anjos, Sebastian Lautz, Aleksandar Kolev + 2024-07-03ArXiv00
visibility_off + Graph External Attention Enhanced Transformer + + + Jianqing Liang, Min Chen, Jiye Liang + 2024-05-31ArXiv05
visibility_off + Wavelet-based Temporal Attention Improves Traffic Forecasting + + + Yash Jakhmola, Nitish Kumar Mishra, Kripabandhu Ghosh, Tanujit Chakraborty + 2024-07-05ArXiv00
visibility_off + TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification + + + Md. Atik Ahamed, Qiang Cheng + 2024-06-06ArXiv04
visibility_off + Generalizing Graph Transformers Across Diverse Graphs and Tasks via Pre-Training on Industrial-Scale Data + + + Yufei He, Zhenyu Hou, Yukuo Cen, Feng He, Xu Cheng, Bryan Hooi + 2024-07-04ArXiv012
visibility_off + TwinS: Revisiting Non-Stationarity in Multivariate Time Series Forecasting + + + Jiaxi Hu, Qingsong Wen, Sijie Ruan, Li Liu, Yuxuan Liang + 2024-06-06ArXiv25
visibility_off + Revisiting Attention for Multivariate Time Series Forecasting + + + Haixiang Wu + 2024-07-18ArXiv00
visibility_off + Long Input Sequence Network for Long Time Series Forecasting + + + Chao Ma, Yikai Hou, Xiang Li, Yinggang Sun, Haining Yu + 2024-07-18ArXiv00
visibility_off + Learning Long Range Dependencies on Graphs via Random Walks + + + Dexiong Chen, Till Hendrik Schulz, Karsten Borgwardt + 2024-06-05ArXiv08
visibility_off + Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift + + + Hui He, Qi Zhang, Kun Yi, Xiaojun Xue, Shoujin Wang, Liang Hu, Longbin Cao + 2024-07-18ArXiv04
visibility_off + Fine-grained Attention in Hierarchical Transformers for Tabular Time-series + + + Raphaël Azorin, Z. B. Houidi, Massimo Gallo, A. Finamore, Pietro Michiardi + 2024-06-21ArXiv024
visibility_off + Text2TimeSeries: Enhancing Financial Forecasting through Time Series Prediction Updates with Event-Driven Insights from Large Language Models + + + Litton J. Kurisinkel, Pruthwik Mishra, Yue Zhang + 2024-07-04ArXiv05
visibility_off + ESQA: Event Sequences Question Answering + + + Irina Abdullaeva, Andrei Filatov, Mikhail Orlov, Ivan Karpukhin, Viacheslav Vasilev, Denis Dimitrov, Andrey Kuznetsov, Ivan A Kireev, Andrey Savchenko + 2024-07-03ArXiv04
visibility_off + Deep-Graph-Sprints: Accelerated Representation Learning in Continuous-Time Dynamic Graphs + + + Ahmad Naser Eddin, Jacopo Bono, David Apar'icio, Hugo Ferreira, Pedro Ribeiro, P. Bizarro + 2024-07-10ArXiv017
visibility_off + MagiNet: Mask-Aware Graph Imputation Network for Incomplete Traffic Data + + + Jianping Zhou, Bin Lu, Zhanyu Liu, Siyu Pan, Xuejun Feng, Hua Wei, Guanjie Zheng, Xinbing Wang, Cheng Zhou + 2024-06-05ArXiv06
visibility_off + A Survey of Transformer Enabled Time Series Synthesis + + + Alexander Sommers, Logan Cummins, Sudip Mittal, Shahram Rahimi, Maria Seale, Joseph Jaboure, Thomas Arnold + 2024-06-04ArXiv013
visibility_off + A Temporal Kolmogorov-Arnold Transformer for Time Series Forecasting + + + Remi Genet, Hugo Inzirillo + 2024-06-04ArXiv81
visibility_off + Long Range Propagation on Continuous-Time Dynamic Graphs + + + Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, Claas Grohnfeldt + 2024-06-04ArXiv010
visibility_off + Towards Neural Scaling Laws for Foundation Models on Temporal Graphs + + + Razieh Shirzadkhani, Tran Gia Bao Ngo, Kiarash Shamsi, Shenyang Huang, Farimah Poursafaei, Poupak Azad, Reihaneh Rabbany, Baris Coskunuzer, Guillaume Rabusseau, C. Akcora + 2024-06-14ArXiv019
visibility_off + Skip-Timeformer: Skip-Time Interaction Transformer for Long Sequence Time-Series Forecasting + + + Wenchang Zhang, Hua Wang, Fan Zhang + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence04
visibility_off + TDT Loss Takes It All: Integrating Temporal Dependencies among Targets into Non-Autoregressive Time Series Forecasting + + + Qi Xiong, Kai Tang, Minbo Ma, Jie Xu, Tianrui Li + 2024-06-07ArXiv04
visibility_off + Dr.E Bridges Graphs with Large Language Models through Words + + + Zipeng Liu, Likang Wu, Ming He, Zhong Guan, Hongke Zhao, Nan Feng + 2024-06-19ArXiv010
visibility_off + GLBench: A Comprehensive Benchmark for Graph with Large Language Models + + + Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor Wai Kin Chan, Jia Li + 2024-07-10ArXiv05
visibility_off + Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models + + + Ali Behrouz, Michele Santacatterina, Ramin Zabih + 2024-06-06ArXiv08
visibility_off + DualTime: A Dual-Adapter Multimodal Language Model for Time Series Representation + + + Weiqi Zhang, Jiexia Ye, Ziyue Li, Jia Li, F. Tsung + 2024-06-07ArXiv247
visibility_off + Bag-of-Future: Time Series Forecasting by Continuous Function Candidates + + + Hendrik Klopries, Vignesh Chandramouli, Andreas Schwung + 2024-06-182024 IEEE 33rd International Symposium on Industrial Electronics (ISIE)013
visibility_off + MGLEP: Multimodal Graph Learning for Modeling Emerging Pandemics with Big Data + + + Khanh-Tung Tran, T. Hy, Lili Jiang, Xuan-Son Vu + 2023-10-23Scientific Reports07
visibility_off + ST-RetNet: A Long-term Spatial-Temporal Traffic Flow Prediction Method + + + Baichao Long, Wang Zhu, Jianli Xiao + 2024-07-13ArXiv00
visibility_off + Transformers meet Neural Algorithmic Reasoners + + + Wilfried Bounsi, Borja Ibarz, Andrew Dudzik, Jessica B. Hamrick, Larisa Markeeva, Alex Vitvitskyi, Razvan Pascanu, Petar Velivckovi'c + 2024-06-13ArXiv067
visibility_off + F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data + + + Zexing Xu, Linjun Zhang, Sitan Yang, Rasoul Etesami, Hanghang Tong, Huan Zhang, Jiawei Han + 2024-06-23ArXiv01
visibility_off + Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning + + + Haoxin Liu, Harshavardhan Kamarthi, Lingkai Kong, Zhiyuan Zhao, Chao Zhang, B. A. Prakash + 2024-06-13ArXiv09
visibility_off + Slot State Space Models + + + Jindong Jiang, Fei Deng, Gautam Singh, Minseung Lee, Sungjin Ahn + 2024-06-18ArXiv010
visibility_off + Capturing Temporal Components for Time Series Classification + + + Venkata Ragavendra Vavilthota, Ranjith Ramanathan, Sathyanarayanan N. Aakur + 2024-06-20ArXiv07
visibility_off + Mamba Hawkes Process + + + Anningzhe Gao, Shan Dai, Yan Hu + 2024-07-07ArXiv01
visibility_off + Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability + + + Kunpeng Xu, Lifei Chen, Shengrui Wang + 2024-06-04ArXiv84
visibility_off + An Unsupervised Long- and Short-Term Sparse Graph Neural Network for Multisensor Anomaly Detection + + + Qiucheng Miao, Dandan Wang, Chuanfu Xu, Jun Zhan, Cheng-Feng Wu + 2024-07-15IEEE Sensors Journal06
visibility_off + Struct-X: Enhancing Large Language Models Reasoning with Structured Data + + + Xiaoyu Tan, Haoyu Wang, Xihe Qiu, Yuan Cheng, Yinghui Xu, Wei Chu, Yuan Qi + 2024-07-17ArXiv05
visibility_off + Time-series representation learning via Time-Frequency Fusion Contrasting + + + Wenbo Zhao, Ling Fan + 2024-06-12Frontiers in Artificial Intelligence01
visibility_off + EchoMamba4Rec: Harmonizing Bidirectional State Space Models with Spectral Filtering for Advanced Sequential Recommendation + + + Yuda Wang, Xuxin He, Shengxin Zhu + 2024-06-04ArXiv21
visibility_off + ARFGCN: Adaptive Receptive Field Graph Convolutional Network for Urban Crowd Flow Prediction + + + Genan Dai, Hutchin Huang, Xiaojiang Peng, Bowen Zhang, Xianghua Fu + 2024-06-03Mathematics02
visibility_off + Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting + + + Yuansan Liu, S. Wijewickrema, Dongting Hu, C. Bester, Stephen O'Leary, James Bailey + 2024-06-05ArXiv015
visibility_off + Efficient and Effective Implicit Dynamic Graph Neural Network + + + Yongjian Zhong, Hieu Vu, Tianbao Yang, Bijaya Adhikari + 2024-06-25ArXiv04
visibility_off + BiLSTM-MLAM: A Multi-Scale Time Series Prediction Model for Sensor Data Based on Bi-LSTM and Local Attention Mechanisms + + + Yongxin Fan, Qian Tang, Yangming Guo, Yifei Wei + 2024-06-01Sensors (Basel, Switzerland)01
visibility_off + XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges + + + Du Yin, Hao Xue, Arian Prabowo, Shuang Ao, Flora D. Salim + 2024-06-18ArXiv06
visibility_off + Forecasting with Deep Learning: Beyond Average of Average of Average Performance + + + Vítor Cerqueira, Luis Roque, Carlos Soares + 2024-06-24ArXiv013
visibility_off + Enhancing Temporal Action Localization: Advanced S6 Modeling with Recurrent Mechanism + + + Sangyoun Lee, Juho Jung, Changdae Oh, Sunghee Yun + 2024-07-18ArXiv00
visibility_off + Longhorn: State Space Models are Amortized Online Learners + + + Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, Qian Liu + 2024-07-19ArXiv016
visibility_off + Time-MMD: A New Multi-Domain Multimodal Dataset for Time Series Analysis + + + Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B. Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, B. A. Prakash + 2024-06-12ArXiv09
visibility_off + Stock Movement Prediction with Multimodal Stable Fusion via Gated Cross-Attention Mechanism + + + Chang Zong, Jian Shao, Weiming Lu, Yueting Zhuang + 2024-06-06ArXiv02
visibility_off + Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks + + + Yurui Lai, Xiaoyang Lin, Renchi Yang, Hongtao Wang + 2024-06-08ArXiv010
visibility_off + Fine-Tuning Large Language Models for Stock Return Prediction Using Newsflow + + + Tian Guo, E. Hauptmann + 2024-07-25ArXiv03
visibility_off + Anomaly detection model for large-scale industrial systems using transfer entropy and graph attention network + + + Shuo Liang, Dechang Pi, Xiangyan Zhang + 2024-06-05Measurement Science and Technology01
visibility_off + Foundations and Frontiers of Graph Learning Theory + + + Yu Huang, Min Zhou, Menglin Yang, Zhen Wang, Muhan Zhang, Jie Wang, Hong Xie, Hao Wang, Defu Lian, Enhong Chen + 2024-07-03ArXiv037
visibility_off + TimeInf: Time Series Data Contribution via Influence Functions + + + Yizi Zhang, Jingyan Shen, Xiaoxue Xiong, Yongchan Kwon + 2024-07-21ArXiv00
visibility_off + Towards Adaptive Neighborhood for Advancing Temporal Interaction Graph Modeling + + + Siwei Zhang, Xi Chen, Yun Xiong, Xixi Wu, Yao Zhang, Yongrui Fu, Yinglong Zhao, Jiawei Zhang + 2024-06-14ArXiv03
visibility_off + Enhancing Data-Limited Graph Neural Networks by Actively Distilling Knowledge from Large Language Models + + + Quan Li, Tianxiang Zhao, Lingwei Chen, Junjie Xu, Suhang Wang + 2024-07-19ArXiv011
visibility_off + TimeAutoDiff: Combining Autoencoder and Diffusion model for time series tabular data synthesizing + + + Namjoon Suh, Yuning Yang, Din-Yin Hsieh, Qitong Luan, Shi Xu, Shixiang Zhu, Guang Cheng + 2024-06-23ArXiv03
visibility_off + Latent Conditional Diffusion-based Data Augmentation for Continuous-Time Dynamic Graph Model + + + Yuxing Tian, Yiyan Qi, Aiwen Jiang, Qi Huang, Jian Guo + 2024-07-11ArXiv02
visibility_off + State Space Models on Temporal Graphs: A First-Principles Study + + + Jintang Li, Ruofan Wu, Xinzhou Jin, Boqun Ma, Liang Chen, Zibin Zheng + 2024-06-03ArXiv010
visibility_off + Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting + + + Sanghyun Lee, Chanyoung Park + 2024-06-04ArXiv00
visibility_off + In-Context Learning of Physical Properties: Few-Shot Adaptation to Out-of-Distribution Molecular Graphs + + + Grzegorz Kaszuba, Amirhossein D. Naghdi, Dario Massa, Stefanos Papanikolaou, Andrzej Jaszkiewicz, Piotr Sankowski + 2024-06-03ArXiv02
visibility_off + Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers + + + Chao Lou, Zixia Jia, Zilong Zheng, Kewei Tu + 2024-06-24ArXiv021
visibility_off + Temporal Graph Rewiring with Expander Graphs + + + Katarina Petrovi'c, Shenyang Huang, Farimah Poursafaei, Petar Velickovic + 2024-06-04ArXiv02
visibility_off + Kolmogorov-Arnold Graph Neural Networks + + + Gianluca De Carlo, A. Mastropietro, Aris Anagnostopoulos + 2024-06-26ArXiv14
visibility_off + FPN-fusion: Enhanced Linear Complexity Time Series Forecasting Model + + + Chu Li, Bingjia Xiao, Q. Yuan + 2024-06-06ArXiv01
visibility_off + CausalFormer: An Interpretable Transformer for Temporal Causal Discovery + + + Lingbai Kong, Wengen Li, Hanchen Yang, Yichao Zhang, J. Guan, Shuigeng Zhou + 2024-06-24ArXiv049
visibility_off + SDformer: Transformer with Spectral Filter and Dynamic Attention for Multivariate Time Series Long-term Forecasting + + + Ziyu Zhou, Gengyu Lyu, Yiming Huang, Zihao Wang, Ziyu Jia, Zhen Yang + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence011
visibility_off + Many-to-Many Prediction for Effective Modeling of Frequent Label Transitions in Time Series + + + Alexander Katrompas, V. Metsis + 2024-06-26Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments017
visibility_off + Reinforced Decoder: Towards Training Recurrent Neural Networks for Time Series Forecasting + + + Qi Sima, Xinze Zhang, Yukun Bao, Siyue Yang, Liang Shen + 2024-06-14ArXiv00
visibility_off + LLM and GNN are Complementary: Distilling LLM for Multimodal Graph Learning + + + Junjie Xu, Zongyu Wu, Min Lin, Xiang Zhang, Suhang Wang + 2024-06-03ArXiv23
visibility_off + A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges + + + Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M. Mulvey, H. Poor, Qingsong Wen, Stefan Zohren + 2024-06-15ArXiv23
visibility_off + Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs + + + J. V. Pichowski, Vincenzo Perri, Lisi Qarkaxhija, Ingo Scholtes + 2024-06-24ArXiv08
visibility_off + Enhancing Size Generalization in Graph Neural Networks through Disentangled Representation Learning + + + Zheng Huang, Qihui Yang, Dawei Zhou, Yujun Yan + 2024-06-07ArXiv00
visibility_off + A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting + + + He Chang, Chenchen Ye, Zhulin Tao, Jie Wu, Zhengmao Yang, Yunshan Ma, Xianglin Huang, Tat-Seng Chua + 2024-07-16ArXiv010
visibility_off + A Language Model-Guided Framework for Mining Time Series with Distributional Shifts + + + Haibei Zhu, Yousef El-Laham, Elizabeth Fons, Svitlana Vyetrenko + 2024-06-07ArXiv07
visibility_off + Mamba State-Space Models Can Be Strong Downstream Learners + + + John T. Halloran, Manbir Gulati, Paul F. Roysdon + 2024-05-31ArXiv05
visibility_off + Mamba-PTQ: Outlier Channels in Recurrent Large Language Models + + + Alessandro Pierro, Steven Abreu + 2024-07-17ArXiv01
visibility_off + Unilateral boundary time series forecasting + + + Chao-Min Chang, Cheng-Te Li, Shou-de Lin + 2024-06-05Frontiers in Big Data02
visibility_off + WEATHER-5K: A Large-scale Global Station Weather Dataset Towards Comprehensive Time-series Forecasting Benchmark + + + Tao Han, Song Guo, Zhenghao Chen, Wanghan Xu, Lei Bai + 2024-06-20ArXiv14
visibility_off + Financial Assets Dependency Prediction Utilizing Spatiotemporal Patterns + + + Haoren Zhu, Pengfei Zhao, NG WilfredSiuHung, Dik Lun Lee + 2024-06-13ArXiv02
visibility_off + DyHANE: dynamic heterogeneous attributed network embedding through experience node replay + + + Liliana Martirano, D. Ienco, R. Interdonato, Andrea Tagarelli + 2024-07-05Appl. Netw. Sci.029
visibility_off + Decoupled Invariant Attention Network for Multivariate Time-series Forecasting + + + Haihua Xu, Wei Fan, Kun Yi, Pengyang Wang + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence02
visibility_off + TemPrompt: Multi-Task Prompt Learning for Temporal Relation Extraction in RAG-based Crowdsourcing Systems + + + Jing Yang, Yu Zhao, Linyao Yang, Xiao Wang, Long Chen, Fei-Yue Wang + 2024-06-21ArXiv08
visibility_off + An improved convolutional recurrent neural network for stock price forecasting + + + Hoang Vuong Pham, Hung Phu Lam, Le Nhat Duy, T. Pham, T. Trinh + 2024-09-01IAES International Journal of Artificial Intelligence (IJ-AI)04
visibility_off + Deep learning for precipitation nowcasting: A survey from the perspective of time series forecasting + + + Sojung An, Tae-Jin Oh, Eunha Sohn, Donghyun Kim + 2024-06-07ArXiv01
visibility_off + Harnessing Temporal Causality for Advanced Temporal Action Detection + + + Shuming Liu, Lin Sui, Chen-Lin Zhang, Fangzhou Mu, Chen Zhao, Bernard Ghanem + 2024-07-25ArXiv010
visibility_off + LFPLM: A General and Flexible Load Forecasting Framework based on Pre-trained Language Model + + + Mingyang Gao, Suyang Zhou, Wei Gu, Zhi Wu, Zijian Hu, Hong Zhu, Haiquan Liu + 2024-06-17ArXiv033
visibility_off + Traffic Prediction considering Multiple Levels of Spatial-temporal Information: A Multi-scale Graph Wavelet-based Approach + + + Zilin Bian, Jingqin Gao, K. Ozbay, Zhenning Li + 2024-06-18ArXiv044
visibility_off + Continual Traffic Forecasting via Mixture of Experts + + + Sanghyun Lee, Chanyoung Park + 2024-06-05ArXiv00
visibility_off + Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models + + + David Bergstrom, Mattias Tiger, Fredrik Heintz + 2024-06-18ArXiv06
visibility_off + A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections + + + Jewel Rana Palit, Osama A Osman + 2024-06-02ArXiv01
visibility_off + Learning Divergence Fields for Shift-Robust Graph Representations + + + Qitian Wu, Fan Nie, Chenxiao Yang, Junchi Yan + 2024-06-07ArXiv017
visibility_off + Towards Effective Time-Aware Language Representation: Exploring Enhanced Temporal Understanding in Language Models + + + Jiexin Wang, Adam Jatowt, Yi Cai + 2024-06-04ArXiv05
visibility_off + NodeFlow: Towards End-to-End Flexible Probabilistic Regression on Tabular Data + + + Patryk Wielopolski, Oleksii Furman, Maciej Zięba + 2024-07-01Entropy02
visibility_off + Transformer Conformal Prediction for Time Series + + + Junghwan Lee, Chen Xu, Yao Xie + 2024-06-08ArXiv07
visibility_off + Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness + + + Kai Guo, Zewen Liu, Zhikai Chen, Hongzhi Wen, Wei Jin, Jiliang Tang, Yi Chang + 2024-07-16ArXiv021
visibility_off + Large Generative Graph Models + + + Yu Wang, Ryan Rossi, Namyong Park, Huiyuan Chen, Nesreen K. Ahmed, Puja Trivedi, Franck Dernoncourt, Danai Koutra, Tyler Derr + 2024-06-07ArXiv036
visibility_off + Temporal Convolution Derived Multi-Layered Reservoir Computing + + + Johannes Viehweg, Dominik Walther, Prof. Dr.-Ing. Patrick Mader + 2024-07-09ArXiv02
visibility_off + Curriculum Negative Mining For Temporal Networks + + + Ziyue Chen, Tongya Zheng, Mingli Song + 2024-07-24ArXiv05
visibility_off + Latent Logic Tree Extraction for Event Sequence Explanation from LLMs + + + Zitao Song, Chao Yang, Chaojie Wang, Bo An, Shuang Li + 2024-06-03ArXiv01
visibility_off + Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach + + + Tanvir Hossain, Khaled Mohammed Saifuddin, Muhammad Ifte Khairul Islam, Farhan Tanvir, Esra Akbas + 2024-07-16ArXiv010
visibility_off + Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach + + + Georgios Tsoumplekas, C. Athanasiadis, D.I. Doukas, Antonios C. Chrysopoulos, P. Mitkas + 2024-06-09ArXiv029
visibility_off + SCAT: A Time Series Forecasting with Spectral Central Alternating Transformers + + + Chengjie Zhou, Chao Che, Pengfei Wang, Qiang Zhang + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence07
visibility_off + Frequency-Enhanced Transformer with Symmetry-Based Lightweight Multi-Representation for Multivariate Time Series Forecasting + + + Chenyue Wang, Zhouyuan Zhang, Xin Wang, Mingyang Liu, Lin Chen, Jiatian Pi + 2024-06-25Symmetry01
visibility_off + Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting + + + Vijaya Krishna Yalavarthi, Randolf Scholz, Kiran Madhusudhanan, Stefan Born, Lars Schmidt-Thieme + 2024-06-11ArXiv04
visibility_off + Introducing a Physics-informed Deep Learning Framework for Bridge Scour Prediction + + + N. Yousefpour, Bo Wang + 2024-07-01ArXiv06
visibility_off + Disentangling Domain and General Representations for Time Series Classification + + + Youmin Chen, Xinyu Yan, Yang Yang, Jianfeng Zhang, Jing Zhang, Lujia Pan, Juren Li + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence06
visibility_off + Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting + + + Romain Ilbert, Malik Tiomoko, Cosme Louart, Ambroise Odonnat, Vasilii Feofanov, Themis Palpanas, I. Redko + 2024-06-14ArXiv049
visibility_off + Addressing Prediction Delays in Time Series Forecasting: A Continuous GRU Approach with Derivative Regularization + + + Sheo Yon Jhin, Seojin Kim, Noseong Park + 2024-06-29ArXiv01
visibility_off + Parallelizing Autoregressive Generation with Variational State Space Models + + + Gaspard Lambrechts, Yann Claes, Pierre Geurts, Damien Ernst + 2024-07-11ArXiv02
visibility_off + Human-like Episodic Memory for Infinite Context LLMs + + + Z. Fountas, Martin A Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lampouras, Haitham Bou-Ammar, Jun Wang + 2024-07-12ArXiv025
visibility_off + HoTPP Benchmark: Are We Good at the Long Horizon Events Forecasting? + + + Ivan Karpukhin, F. Shipilov, Andrey Savchenko + 2024-06-20ArXiv00
visibility_off + Efficient World Models with Context-Aware Tokenization + + + Vincent Micheli, Eloi Alonso, Franccois Fleuret + 2024-06-27ArXiv011
visibility_off + An Unsupervised Approach for Periodic Source Detection in Time Series + + + B. U. Demirel, Christian Holz + 2024-06-01ArXiv05
visibility_off + Knowledge Graph-Enhanced Large Language Models via Path Selection + + + Haochen Liu, Song Wang, Yaochen Zhu, Yushun Dong, Jundong Li + 2024-06-19ArXiv014
visibility_off + Spatial-temporal Attention Model Based on Transformer Architecture for Anomaly Detection in Multivariate Time Series Data + + + Lai Zeng Lai Zeng, Xiaomei Yang Lai Zeng + 2024-06-01電腦學刊00
visibility_off + Learning Global and Local Features of Power Load Series Through Transformer and 2D-CNN: An image-based Multi-step Forecasting Approach Incorporating Phase Space Reconstruction + + + Zihan Tang, Tianyao Ji, Wenhu Tang + 2024-07-16ArXiv00
visibility_off + GenDistiller: Distilling Pre-trained Language Models based on an Autoregressive Generative Model + + + Yingying Gao, Shilei Zhang, Chao Deng, Junlan Feng + 2024-06-12ArXiv05
visibility_off + How In-Context Learning Emerges from Training on Unstructured Data: On the Role of Co-Occurrence, Positional Information, and Noise Structures + + + Kevin Christian Wibisono, Yixin Wang + 2024-05-31ArXiv00
visibility_off + How Well Can a Long Sequence Model Model Long Sequences? Comparing Architechtural Inductive Biases on Long-Context Abilities + + + Jerry Huang + 2024-07-11ArXiv00
visibility_off + Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens + + + Kausik Lakkaraju, Rachneet Kaur, Zhen Zeng, Parisa Zehtabi, Sunandita Patra, Biplav Srivastava, Marco Valtorta + 2024-06-12ArXiv07
visibility_off + Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding + + + Zhihan Zhang, Yixin Cao, Chenchen Ye, Yunshan Ma, Lizi Liao, Tat-Seng Chua + 2024-06-04ArXiv013
visibility_off + Learning on Large Graphs using Intersecting Communities + + + Ben Finkelshtein, I. Ceylan, Michael Bronstein, Ron Levie + 2024-05-31ArXiv115
visibility_off + Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting + + + Yifan Hu, Peiyuan Liu, Peng Zhu, Dawei Cheng, Tao Dai + 2024-06-06ArXiv01
visibility_off + Multiway Multislice PHATE: Visualizing Hidden Dynamics of RNNs through Training + + + Jiancheng Xie, Lou C. Kohler Voinov, Noga Mudrik, Gal Mishne, Adam S. Charles + 2024-06-04ArXiv013
visibility_off + ATL-Net: Ocean Current Prediction Based on Self-Attention Mechanism and Feature Enhancement + + + Qingyu Sun, Yi An, Xiangjun Yu, Lin Wu, Shuang Wei + 2024-06-072024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC)00
visibility_off + Spatio-Temporal Parallel Transformer based model for Traffic Prediction + + + Rahul Kumar, João Mendes‐Moreira, Joydeep Chandra + 2024-07-19ACM Transactions on Knowledge Discovery from Data05
visibility_off + Beyond 5G Network Failure Classification for Network Digital Twin Using Graph Neural Network + + + Abubakar Isah, I. Aliyu, Jaechan Shim, Hoyong Ryu, Jinsul Kim + 2024-06-06ArXiv03
visibility_off + Seq-to-Final: A Benchmark for Tuning from Sequential Distributions to a Final Time Point + + + Christina X. Ji, Ahmed M. Alaa, David Sontag + 2024-07-12ArXiv03
visibility_off + Neuro-Symbolic Temporal Point Processes + + + Yang Yang, Chao Yang, Boyang Li, Ying Fu, Shuang Li + 2024-06-06ArXiv01
visibility_off + Multi-Epoch learning with Data Augmentation for Deep Click-Through Rate Prediction + + + Zhongxiang Fan, Zhaocheng Liu, Jian Liang, Dongying Kong, Han Li, Peng Jiang, Shuang Li, Kun Gai + 2024-06-27ArXiv02
visibility_off + Anomaly detection in multivariate time series data using deep ensemble models + + + Amjad Iqbal, Rashid Amin, Faisal S. Alsubaei, Abdulrahman Alzahrani + 2024-06-06PLOS ONE04
visibility_off + Spatial-Temporal Attention Model for Traffic State Estimation with Sparse Internet of Vehicles + + + Jianzhe Xue, Dongcheng Yuan, Yu Sun, Tianqi Zhang, Wenchao Xu, Haibo Zhou, Xuemin Shen + 2024-07-10ArXiv03
visibility_off + STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning + + + Wei Shao, Yufan Kang, Ziyan Peng, Xiao Xiao, Lei Wang, Yuhui Yang, Flora D. Salim + 2024-06-06ArXiv03
visibility_off + Combining Knowledge Graphs and Large Language Models + + + Amanda Kau, Xuzeng He, Aishwarya Nambissan, Aland Astudillo, Hui Yin, Amir Aryani + 2024-07-09ArXiv00
visibility_off + LEMoE: Advanced Mixture of Experts Adaptor for Lifelong Model Editing of Large Language Models + + + Renzhi Wang, Piji Li + 2024-06-28ArXiv01
visibility_off + CAFO: Feature-Centric Explanation on Time Series Classification + + + Jaeho Kim, S. Hahn, Yoontae Hwang, Junghye Lee, Seulki Lee + 2024-06-03ArXiv03
visibility_off + Know Your Neighborhood: General and Zero-Shot Capable Binary Function Search Powered by Call Graphlets + + + Josh Collyer, Tim Watson, Iain Phillips + 2024-06-02ArXiv01
visibility_off + An Attention-Based Multi-Context Convolutional Encoder-Decoder Neural Network for Work Zone Traffic Impact Prediction + + + Qinhua Jiang, Xishun Liao, Yaofa Gong, Jiaqi Ma + 2024-05-31ArXiv14
visibility_off + Deep State Space Recurrent Neural Networks for Time Series Forecasting + + + Hugo Inzirillo + 2024-07-21ArXiv00
visibility_off + ZeroDL: Zero-shot Distribution Learning for Text Clustering via Large Language Models + + + Hwiyeol Jo, Hyunwoo Lee, Taiwoo Park + 2024-06-19ArXiv00
visibility_off + The Significance of Latent Data Divergence in Predicting System Degradation + + + Miguel Fernandes, Catarina Silva, Alberto Cardoso, Bernardete Ribeiro + 2024-06-13ArXiv03
visibility_off + Heterogeneous Graph Neural Networks with Post-hoc Explanations for Multi-modal and Explainable Land Use Inference + + + Xuehao Zhai, Junqi Jiang, Adam Dejl, Antonio Rago, Fangce Guo, Francesca Toni, Aruna Sivakumar + 2024-06-19ArXiv014
visibility_off + Multiview Spatial-Temporal Meta-Learning for Multivariate Time Series Forecasting + + + Liang Zhang, Jianping Zhu, Bo Jin, Xiaopeng Wei + 2024-07-01Sensors (Basel, Switzerland)08
visibility_off + TSI-Bench: Benchmarking Time Series Imputation + + + Wenjie Du, Jun Wang, Linglong Qian, Yiyuan Yang, Fanxing Liu, Zepu Wang, Zina Ibrahim, Haoxin Liu, Zhiyuan Zhao, Yingjie Zhou, Wenjia Wang, Kaize Ding, Yuxuan Liang, B. A. Prakash, Qingsong Wen + 2024-06-18ArXiv24
visibility_off + Class-Based Time Series Data Augmentation to Mitigate Extreme Class Imbalance for Solar Flare Prediction + + + Junzhi Wen, R. Angryk + 2024-05-31ArXiv022
visibility_off + Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations + + + Yujee Song, Donghyun Lee, Rui Meng, Won Hwa Kim + 2024-06-10ArXiv00
visibility_off + Multifeature-Based Variational Mode Decomposition–Temporal Convolutional Network–Long Short-Term Memory for Short-Term Forecasting of the Load of Port Power Systems + + + Guang Chen, Xiaofeng Ma, Lin Wei + 2024-06-22Sustainability00
visibility_off + Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion + + + Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, Vincent Sitzmann + 2024-07-01ArXiv03
visibility_off + Test-Time Adaptation with State-Space Models + + + Mona Schirmer, Dan Zhang, Eric Nalisnick + 2024-07-17ArXiv01
visibility_off + An NCDE-based Framework for Universal Representation Learning of Time Series + + + Zihan Liu, Bowen Du, Junchen Ye, Xianqing Wen, Leilei Sun + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence025
visibility_off + A Closer Look at Deep Learning on Tabular Data + + + Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, De-chuan Zhan + 2024-07-01ArXiv129
visibility_off + Distributional Refinement Network: Distributional Forecasting via Deep Learning + + + Benjamin Avanzi, Eric Dong, P. Laub, Bernard Wong + 2024-06-03ArXiv014
visibility_off + A spatial-temporal graph gated transformer for traffic forecasting + + + Haroun Bouchemoukha, M. Zennir, Ahmed Alioua + 2024-06-26Trans. Emerg. Telecommun. Technol.04
visibility_off + Causality for Tabular Data Synthesis: A High-Order Structure Causal Benchmark Framework + + + Ruibo Tu, Zineb Senane, Lele Cao, Cheng Zhang, H. Kjellström, G. Henter + 2024-06-12ArXiv036
visibility_off + FLRNN-FGA: Fractional-Order Lipschitz Recurrent Neural Network with Frequency-Domain Gated Attention Mechanism for Time Series Forecasting + + + Chunna Zhao, Junjie Ye, Zelong Zhu, Yaqun Huang + 2024-07-22Fractal and Fractional07
visibility_off + Cascading Large Language Models for Salient Event Graph Generation + + + Xingwei Tan, Yuxiang Zhou, Gabriele Pergola, Yulan He + 2024-06-26ArXiv010
visibility_off + Parallelizing Linear Transformers with the Delta Rule over Sequence Length + + + Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, Yoon Kim + 2024-06-10ArXiv19
visibility_off + CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting + + + Jianrong Ding, Zhanyu Liu, Guanjie Zheng, Haiming Jin, Linghe Kong + 2024-06-04ArXiv05
visibility_off + AIFS - ECMWF's data-driven forecasting system + + + Simon Lang, Mihai Alexe, M. Chantry, J. Dramsch, F. Pinault, Baudouin Raoult, Mariana C. A. Clare, Christian Lessig, Michael Maier‐Gerber, Linus Magnusson, Z. B. Bouallègue, Ana Prieto Nemesio, P. Dueben, Andrew Brown, F. Pappenberger, F. Rabier + 2024-06-03ArXiv473
visibility_off + Temporal Representation Learning for Stock Similarities and Its Applications in Investment Management + + + Yoon-Jeong Hwang, Stefan Zohren, Yongjae Lee + 2024-07-18ArXiv01
visibility_off + Separations in the Representational Capabilities of Transformers and Recurrent Architectures + + + S. Bhattamishra, Michael Hahn, Phil Blunsom, Varun Kanade + 2024-06-13ArXiv010
visibility_off + Multi-variable Adversarial Time-Series Forecast Model + + + Xiaoqiao Chen + 2024-06-02ArXiv00
visibility_off + GNNTAL:A Novel Model for Identifying Critical Nodes in Complex Networks + + + Hao Wang, Ting Luo, Shuang-ping Yang, Ming Jing, Jian Wang, Na Zhao + 2024-06-24ArXiv03
visibility_off + Graph Structure Learning with Interpretable Bayesian Neural Networks + + + Max Wasserman, Gonzalo Mateos + 2024-06-20ArXiv03
visibility_off + HAF-RM: A Hybrid Alignment Framework for Reward Model Training + + + Shujun Liu, Xiaoyu Shen, Yuhang Lai, Siyuan Wang, Shengbin Yue, Zengfeng Huang, Xuanjing Huang, Zhongyu Wei + 2024-07-04ArXiv014
visibility_off + SpecAR-Net: Spectrogram Analysis and Representation Network for Time Series + + + Yi Dong, Liwen Zhang, Youcheng Zhang, Shi Peng, Wen Chen, Zhe Ma + 2024-08-01Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence00
visibility_off + Adaptive Cascading Network for Continual Test-Time Adaptation + + + Kien X. Nguyen, Fengchun Qiao, Xi Peng + 2024-07-17ArXiv06
visibility_off + DRLSTM-DA: a novel aeroengine remaining useful life prediction method based on deep optimization of multiple sensors information + + + Shiwei Suo, Song Fu, Lin Lin, Sihao Zhang, Yikun Liu, Guolei Hu, Changsheng Hu + 2024-06-17Measurement Science and Technology07
visibility_off + Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution + + + Dinh Phu Tran, Dao Duy Hung, Daeyoung Kim + 2024-07-23ArXiv00
visibility_off + Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models + + + Raeid Saqur, Anastasis Kratsios, Florian Krach, Yannick Limmer, Jacob-Junqi Tian, John Willes, Blanka Horvath, Frank Rudzicz + 2024-06-05ArXiv06
visibility_off + Estimating Knowledge in Large Language Models Without Generating a Single Token + + + Daniela Gottesman, Mor Geva + 2024-06-18ArXiv121
visibility_off + Approximating G(t)/GI/1 queues with deep learning + + + Eliran Sherzer, Opher Baron, Dmitry Krass, Yehezkel S. Resheff + 2024-07-11ArXiv014
visibility_off + Generative Modelling of Structurally Constrained Graphs + + + Manuel Madeira, Clément Vignac, D. Thanou, Pascal Frossard + 2024-06-25ArXiv020
visibility_off + Predicting grid frequency short-term dynamics with Gaussian processes and sequence modeling + + + Bolin Liu, Maximilian Coblenz, Oliver Grothe + 2024-05-31Proceedings of the 15th ACM International Conference on Future and Sustainable Energy Systems05
visibility_off + Transformers on Markov Data: Constant Depth Suffices + + + Nived Rajaraman, Marco Bondaschi, K. Ramchandran, Michael C. Gastpar, Ashok Vardhan Makkuva + 2024-07-25ArXiv08
visibility_off + Foundation Inference Models for Markov Jump Processes + + + David Berghaus, K. Cvejoski, Patrick Seifner, C. Ojeda, Ramses J. Sanchez + 2024-06-10ArXiv07
visibility_off + GenFollower: Enhancing Car-Following Prediction with Large Language Models + + + Xianda Chen, Mingxing Peng, PakHin Tiu, Yuanfei Wu, Junjie Chen, Meixin Zhu, Xinhu Zheng + 2024-07-08ArXiv14
visibility_off + STBench: Assessing the Ability of Large Language Models in Spatio-Temporal Analysis + + + Wenbin Li, Di Yao, Ruibo Zhao, Wenjie Chen, Zijie Xu, Chengxue Luo, Chang Gong, Quanliang Jing, Haining Tan, Jingping Bi + 2024-06-27ArXiv04
visibility_off + Quantum-Train Long Short-Term Memory: Application on Flood Prediction Problem + + + Chu-Hsuan Abraham Lin, Chen-Yu Liu, Kuan-Cheng Chen + 2024-07-11ArXiv12
visibility_off + MoCoformer: Quantifying Temporal Irregularities in Solar Wind for Long-Term Sequence Prediction + + + Zheng Wang, Jiaodi Zhang, Meijun Sun + 2024-05-31Applied Sciences013
visibility_off + Research on load clustering algorithm based on variational autoencoder and hierarchical clustering + + + Miaozhuang Cai, Yin Zheng, Zhengyang Peng, Chunyan Huang, Haoxia Jiang + 2024-06-13PLOS ONE01
visibility_off + A binary-domain recurrent-like architecture-based dynamic graph neural network + + + Zi-chao Chen, Sui Lin + 2024-06-25Auton. Intell. Syst.00
visibility_off + On the Expressive Power of Spectral Invariant Graph Neural Networks + + + Bohang Zhang, Lingxiao Zhao, Haggai Maron + 2024-06-06ArXiv023
visibility_off + Shale Gas Production Forecasting with Well Interference Based on Spatial-Temporal Graph Convolutional Network + + + Ziming Xu, Juliana Y. Leung + 2024-07-01SPE Journal01
visibility_off + Explaining time series models using frequency masking + + + Thea Brusch, Kristoffer Wickstrøm, Mikkel N. Schmidt, T. S. Alstrøm, Robert Jenssen + 2024-06-19ArXiv012
visibility_off + Hierarchical Micro-Segmentations for Zero-Trust Services via Large Language Model (LLM)-enhanced Graph Diffusion + + + Yinqiu Liu, Guangyuan Liu, Hongyang Du, D. Niyato, Jiawen Kang, Zehui Xiong, Dong In Kim, X. Shen + 2024-06-20ArXiv0112
visibility_off + Adaptive predictive modeling with online learning: addressing data drift challenges in historical data for distributed inferencing + + + Cleon Anderson, Scott E. Brown, David Harman, M. Dwyer + 2024-06-07None03
visibility_off + Fredformer: Frequency Debiased Transformer for Time Series Forecasting + + + Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, Yasushi Sakurai + 2024-06-13ArXiv013
visibility_off + Not All Frequencies Are Created Equal:Towards a Dynamic Fusion of Frequencies in Time-Series Forecasting + + + Xingyu Zhang, Siyu Zhao, Zeen Song, Huijie Guo, Jianqi Zhang, Changwen Zheng, Wenwen Qiang + 2024-07-17ArXiv08
visibility_off + Graph Neural Reaction Diffusion Models + + + Moshe Eliasof, Eldad Haber, Eran Treister + 2024-06-16ArXiv115
visibility_off + Spatiotemporal Dynamic Multi-Hop Network for Traffic Flow Forecasting + + + Wenguang Chai, Qingfeng Luo, Zhizhe Lin, Jingwen Yan, Jinglin Zhou, Teng Zhou + 2024-07-09Sustainability011
visibility_off + SigDiffusions: Score-Based Diffusion Models for Long Time Series via Log-Signature Embeddings + + + Barbora Barancikova, Zhuoyue Huang, Cristopher Salvi + 2024-06-14ArXiv01
visibility_off + Comparative Analysis of Recurrent Neural Network Models Performance in Predicting Bitcoin Prices + + + Zidane Ikkoy Ramadhan, H. Widiputra + 2024-06-21Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)09
visibility_off + Trend Encoder with Attentive Neural Process: Node Performance Extrapolation for Non-Time-Series Datasets + + + K. Hattori, Tomohiro Korikawa, Chikako Takasaki + 2024-02-192024 International Conference on Computing, Networking and Communications (ICNC)06
visibility_off + Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction + + + Christoph Jurgen Hemmer, Manuel Brenner, Florian Hess, Daniel Durstewitz + 2024-06-07ArXiv03
visibility_off + Aligning Transformers with Weisfeiler-Leman + + + Luis Müller, Christopher Morris + 2024-06-05ArXiv01
visibility_off + Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models + + + Kent Fujiwara, Mikihiro Tanaka, Qing Yu + 2024-07-22ArXiv01
visibility_off + USDC: A Dataset of User Stance and Dogmatism in Long Conversations + + + Mounika Marreddy, S. Oota, Venkata Charan Chinni, Manish Gupta, Lucie Flek + 2024-06-24ArXiv09
visibility_off + Evaluating Recurrent Neural Networks for prediction of Multi- Variate time series VoIP metrics + + + M. Mauro, G. Galatro, Fabio Postiglione, Wei Song, Antonio Liotta + 2024-06-112024 22nd Mediterranean Communication and Computer Networking Conference (MedComNet)013
visibility_off + SIF-STGDAN: A Social Interaction Force Spatial-Temporal Graph Dynamic Attention Network for Decision-Making of Connected and Autonomous Vehicles + + + Qi Liu, Yujie Tang, Xueyuan Li, Fan Yang, Xin Gao, Zirui Li + 2024-06-022024 IEEE Intelligent Vehicles Symposium (IV)08
visibility_off + Interpretability of Causal Discovery in Tracking Deterioration in a Highly Dynamic Process + + + Asha Choudhary, Matej Vuković, Belgin Mutlu, Michael Haslgrübler, R. Kern + 2024-06-01Sensors (Basel, Switzerland)07
visibility_off + Distributed Rule Vectors is A Key Mechanism in Large Language Models' In-Context Learning + + + Bowen Zheng, Ming Ma, Zhongqiao Lin, Tianming Yang + 2024-06-23ArXiv04
visibility_off + Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder + + + Parley R Yang, Alexander Y. Shestopaloff + 2024-06-19ArXiv07
visibility_off + Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks + + + Joel Oskarsson, Tomas Landelius, M. Deisenroth, Fredrik Lindsten + 2024-06-07ArXiv144
visibility_off + Exploiting Signal Propagation Delays to Match Task Memory Requirements in Reservoir Computing + + + Stefan Iacob, J. Dambre + 2024-06-01Biomimetics035
visibility_off + Time-Series Embeddings from Language Models: A Tool for Wind Direction Nowcasting + + + Décio Alves, Fábio Mendonça, S. Mostafa, F. Morgado‐Dias + 2024-06-01Journal of Meteorological Research017
visibility_off + Investigation of Time Series Data Augmentation Methods for Improving Deep Learning Models in Conveyor Belt Load Classification + + + T. Žvirblis, Armantas Pikšrys, Damian Bzinkowski, A. Kilikevičius + 2024-05-312024 IEEE 11th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)012
visibility_off + Randomnet: clustering time series using untrained deep neural networks + + + Xiaosheng Li, Wenjie Xi, Jessica Lin + 2024-06-22Data Mining and Knowledge Discovery05
visibility_off + Inferring the time-varying coupling of dynamical systems with temporal convolutional autoencoders + + + Josuan Calderon, Gordon J. Berman + 2024-06-05ArXiv01
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
+

+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ + + +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/VPE.png b/assets/VPE.png new file mode 100644 index 00000000..b5df8a78 Binary files /dev/null and b/assets/VPE.png differ diff --git a/assets/_mkdocstrings.css b/assets/_mkdocstrings.css new file mode 100644 index 00000000..e69de29b diff --git a/assets/images/favicon.png b/assets/images/favicon.png new file mode 100644 index 00000000..1cf13b9f Binary files /dev/null and b/assets/images/favicon.png differ diff --git a/assets/javascripts/bundle.c8d2eff1.min.js b/assets/javascripts/bundle.c8d2eff1.min.js new file mode 100644 index 00000000..4b1b31f5 --- /dev/null +++ b/assets/javascripts/bundle.c8d2eff1.min.js @@ -0,0 +1,29 @@ +"use strict";(()=>{var _i=Object.create;var br=Object.defineProperty;var Ai=Object.getOwnPropertyDescriptor;var Ci=Object.getOwnPropertyNames,Ft=Object.getOwnPropertySymbols,ki=Object.getPrototypeOf,vr=Object.prototype.hasOwnProperty,eo=Object.prototype.propertyIsEnumerable;var Zr=(e,t,r)=>t in e?br(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r,F=(e,t)=>{for(var r in t||(t={}))vr.call(t,r)&&Zr(e,r,t[r]);if(Ft)for(var r of Ft(t))eo.call(t,r)&&Zr(e,r,t[r]);return e};var to=(e,t)=>{var r={};for(var o in e)vr.call(e,o)&&t.indexOf(o)<0&&(r[o]=e[o]);if(e!=null&&Ft)for(var o of Ft(e))t.indexOf(o)<0&&eo.call(e,o)&&(r[o]=e[o]);return r};var gr=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports);var Hi=(e,t,r,o)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Ci(t))!vr.call(e,n)&&n!==r&&br(e,n,{get:()=>t[n],enumerable:!(o=Ai(t,n))||o.enumerable});return e};var jt=(e,t,r)=>(r=e!=null?_i(ki(e)):{},Hi(t||!e||!e.__esModule?br(r,"default",{value:e,enumerable:!0}):r,e));var ro=(e,t,r)=>new Promise((o,n)=>{var i=c=>{try{a(r.next(c))}catch(p){n(p)}},s=c=>{try{a(r.throw(c))}catch(p){n(p)}},a=c=>c.done?o(c.value):Promise.resolve(c.value).then(i,s);a((r=r.apply(e,t)).next())});var no=gr((xr,oo)=>{(function(e,t){typeof xr=="object"&&typeof oo!="undefined"?t():typeof define=="function"&&define.amd?define(t):t()})(xr,function(){"use strict";function e(r){var o=!0,n=!1,i=null,s={text:!0,search:!0,url:!0,tel:!0,email:!0,password:!0,number:!0,date:!0,month:!0,week:!0,time:!0,datetime:!0,"datetime-local":!0};function a(C){return!!(C&&C!==document&&C.nodeName!=="HTML"&&C.nodeName!=="BODY"&&"classList"in C&&"contains"in C.classList)}function c(C){var ct=C.type,Ne=C.tagName;return!!(Ne==="INPUT"&&s[ct]&&!C.readOnly||Ne==="TEXTAREA"&&!C.readOnly||C.isContentEditable)}function p(C){C.classList.contains("focus-visible")||(C.classList.add("focus-visible"),C.setAttribute("data-focus-visible-added",""))}function l(C){C.hasAttribute("data-focus-visible-added")&&(C.classList.remove("focus-visible"),C.removeAttribute("data-focus-visible-added"))}function f(C){C.metaKey||C.altKey||C.ctrlKey||(a(r.activeElement)&&p(r.activeElement),o=!0)}function u(C){o=!1}function h(C){a(C.target)&&(o||c(C.target))&&p(C.target)}function w(C){a(C.target)&&(C.target.classList.contains("focus-visible")||C.target.hasAttribute("data-focus-visible-added"))&&(n=!0,window.clearTimeout(i),i=window.setTimeout(function(){n=!1},100),l(C.target))}function A(C){document.visibilityState==="hidden"&&(n&&(o=!0),Z())}function Z(){document.addEventListener("mousemove",J),document.addEventListener("mousedown",J),document.addEventListener("mouseup",J),document.addEventListener("pointermove",J),document.addEventListener("pointerdown",J),document.addEventListener("pointerup",J),document.addEventListener("touchmove",J),document.addEventListener("touchstart",J),document.addEventListener("touchend",J)}function te(){document.removeEventListener("mousemove",J),document.removeEventListener("mousedown",J),document.removeEventListener("mouseup",J),document.removeEventListener("pointermove",J),document.removeEventListener("pointerdown",J),document.removeEventListener("pointerup",J),document.removeEventListener("touchmove",J),document.removeEventListener("touchstart",J),document.removeEventListener("touchend",J)}function J(C){C.target.nodeName&&C.target.nodeName.toLowerCase()==="html"||(o=!1,te())}document.addEventListener("keydown",f,!0),document.addEventListener("mousedown",u,!0),document.addEventListener("pointerdown",u,!0),document.addEventListener("touchstart",u,!0),document.addEventListener("visibilitychange",A,!0),Z(),r.addEventListener("focus",h,!0),r.addEventListener("blur",w,!0),r.nodeType===Node.DOCUMENT_FRAGMENT_NODE&&r.host?r.host.setAttribute("data-js-focus-visible",""):r.nodeType===Node.DOCUMENT_NODE&&(document.documentElement.classList.add("js-focus-visible"),document.documentElement.setAttribute("data-js-focus-visible",""))}if(typeof window!="undefined"&&typeof document!="undefined"){window.applyFocusVisiblePolyfill=e;var t;try{t=new CustomEvent("focus-visible-polyfill-ready")}catch(r){t=document.createEvent("CustomEvent"),t.initCustomEvent("focus-visible-polyfill-ready",!1,!1,{})}window.dispatchEvent(t)}typeof document!="undefined"&&e(document)})});var zr=gr((kt,Vr)=>{/*! + * clipboard.js v2.0.11 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */(function(t,r){typeof kt=="object"&&typeof Vr=="object"?Vr.exports=r():typeof define=="function"&&define.amd?define([],r):typeof kt=="object"?kt.ClipboardJS=r():t.ClipboardJS=r()})(kt,function(){return function(){var e={686:function(o,n,i){"use strict";i.d(n,{default:function(){return Li}});var s=i(279),a=i.n(s),c=i(370),p=i.n(c),l=i(817),f=i.n(l);function u(D){try{return document.execCommand(D)}catch(M){return!1}}var h=function(M){var O=f()(M);return u("cut"),O},w=h;function A(D){var M=document.documentElement.getAttribute("dir")==="rtl",O=document.createElement("textarea");O.style.fontSize="12pt",O.style.border="0",O.style.padding="0",O.style.margin="0",O.style.position="absolute",O.style[M?"right":"left"]="-9999px";var I=window.pageYOffset||document.documentElement.scrollTop;return O.style.top="".concat(I,"px"),O.setAttribute("readonly",""),O.value=D,O}var Z=function(M,O){var I=A(M);O.container.appendChild(I);var W=f()(I);return u("copy"),I.remove(),W},te=function(M){var O=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body},I="";return typeof M=="string"?I=Z(M,O):M instanceof HTMLInputElement&&!["text","search","url","tel","password"].includes(M==null?void 0:M.type)?I=Z(M.value,O):(I=f()(M),u("copy")),I},J=te;function C(D){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?C=function(O){return typeof O}:C=function(O){return O&&typeof Symbol=="function"&&O.constructor===Symbol&&O!==Symbol.prototype?"symbol":typeof O},C(D)}var ct=function(){var M=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},O=M.action,I=O===void 0?"copy":O,W=M.container,K=M.target,Ce=M.text;if(I!=="copy"&&I!=="cut")throw new Error('Invalid "action" value, use either "copy" or "cut"');if(K!==void 0)if(K&&C(K)==="object"&&K.nodeType===1){if(I==="copy"&&K.hasAttribute("disabled"))throw new Error('Invalid "target" attribute. Please use "readonly" instead of "disabled" attribute');if(I==="cut"&&(K.hasAttribute("readonly")||K.hasAttribute("disabled")))throw new Error(`Invalid "target" attribute. You can't cut text from elements with "readonly" or "disabled" attributes`)}else throw new Error('Invalid "target" value, use a valid Element');if(Ce)return J(Ce,{container:W});if(K)return I==="cut"?w(K):J(K,{container:W})},Ne=ct;function Pe(D){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?Pe=function(O){return typeof O}:Pe=function(O){return O&&typeof Symbol=="function"&&O.constructor===Symbol&&O!==Symbol.prototype?"symbol":typeof O},Pe(D)}function xi(D,M){if(!(D instanceof M))throw new TypeError("Cannot call a class as a function")}function Xr(D,M){for(var O=0;O0&&arguments[0]!==void 0?arguments[0]:{};this.action=typeof W.action=="function"?W.action:this.defaultAction,this.target=typeof W.target=="function"?W.target:this.defaultTarget,this.text=typeof W.text=="function"?W.text:this.defaultText,this.container=Pe(W.container)==="object"?W.container:document.body}},{key:"listenClick",value:function(W){var K=this;this.listener=p()(W,"click",function(Ce){return K.onClick(Ce)})}},{key:"onClick",value:function(W){var K=W.delegateTarget||W.currentTarget,Ce=this.action(K)||"copy",It=Ne({action:Ce,container:this.container,target:this.target(K),text:this.text(K)});this.emit(It?"success":"error",{action:Ce,text:It,trigger:K,clearSelection:function(){K&&K.focus(),window.getSelection().removeAllRanges()}})}},{key:"defaultAction",value:function(W){return hr("action",W)}},{key:"defaultTarget",value:function(W){var K=hr("target",W);if(K)return document.querySelector(K)}},{key:"defaultText",value:function(W){return hr("text",W)}},{key:"destroy",value:function(){this.listener.destroy()}}],[{key:"copy",value:function(W){var K=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body};return J(W,K)}},{key:"cut",value:function(W){return w(W)}},{key:"isSupported",value:function(){var W=arguments.length>0&&arguments[0]!==void 0?arguments[0]:["copy","cut"],K=typeof W=="string"?[W]:W,Ce=!!document.queryCommandSupported;return K.forEach(function(It){Ce=Ce&&!!document.queryCommandSupported(It)}),Ce}}]),O}(a()),Li=Mi},828:function(o){var n=9;if(typeof Element!="undefined"&&!Element.prototype.matches){var i=Element.prototype;i.matches=i.matchesSelector||i.mozMatchesSelector||i.msMatchesSelector||i.oMatchesSelector||i.webkitMatchesSelector}function s(a,c){for(;a&&a.nodeType!==n;){if(typeof a.matches=="function"&&a.matches(c))return a;a=a.parentNode}}o.exports=s},438:function(o,n,i){var s=i(828);function a(l,f,u,h,w){var A=p.apply(this,arguments);return l.addEventListener(u,A,w),{destroy:function(){l.removeEventListener(u,A,w)}}}function c(l,f,u,h,w){return typeof l.addEventListener=="function"?a.apply(null,arguments):typeof u=="function"?a.bind(null,document).apply(null,arguments):(typeof l=="string"&&(l=document.querySelectorAll(l)),Array.prototype.map.call(l,function(A){return a(A,f,u,h,w)}))}function p(l,f,u,h){return function(w){w.delegateTarget=s(w.target,f),w.delegateTarget&&h.call(l,w)}}o.exports=c},879:function(o,n){n.node=function(i){return i!==void 0&&i instanceof HTMLElement&&i.nodeType===1},n.nodeList=function(i){var s=Object.prototype.toString.call(i);return i!==void 0&&(s==="[object NodeList]"||s==="[object HTMLCollection]")&&"length"in i&&(i.length===0||n.node(i[0]))},n.string=function(i){return typeof i=="string"||i instanceof String},n.fn=function(i){var s=Object.prototype.toString.call(i);return s==="[object Function]"}},370:function(o,n,i){var s=i(879),a=i(438);function c(u,h,w){if(!u&&!h&&!w)throw new Error("Missing required arguments");if(!s.string(h))throw new TypeError("Second argument must be a String");if(!s.fn(w))throw new TypeError("Third argument must be a Function");if(s.node(u))return p(u,h,w);if(s.nodeList(u))return l(u,h,w);if(s.string(u))return f(u,h,w);throw new TypeError("First argument must be a String, HTMLElement, HTMLCollection, or NodeList")}function p(u,h,w){return u.addEventListener(h,w),{destroy:function(){u.removeEventListener(h,w)}}}function l(u,h,w){return Array.prototype.forEach.call(u,function(A){A.addEventListener(h,w)}),{destroy:function(){Array.prototype.forEach.call(u,function(A){A.removeEventListener(h,w)})}}}function f(u,h,w){return a(document.body,u,h,w)}o.exports=c},817:function(o){function n(i){var s;if(i.nodeName==="SELECT")i.focus(),s=i.value;else if(i.nodeName==="INPUT"||i.nodeName==="TEXTAREA"){var a=i.hasAttribute("readonly");a||i.setAttribute("readonly",""),i.select(),i.setSelectionRange(0,i.value.length),a||i.removeAttribute("readonly"),s=i.value}else{i.hasAttribute("contenteditable")&&i.focus();var c=window.getSelection(),p=document.createRange();p.selectNodeContents(i),c.removeAllRanges(),c.addRange(p),s=c.toString()}return s}o.exports=n},279:function(o){function n(){}n.prototype={on:function(i,s,a){var c=this.e||(this.e={});return(c[i]||(c[i]=[])).push({fn:s,ctx:a}),this},once:function(i,s,a){var c=this;function p(){c.off(i,p),s.apply(a,arguments)}return p._=s,this.on(i,p,a)},emit:function(i){var s=[].slice.call(arguments,1),a=((this.e||(this.e={}))[i]||[]).slice(),c=0,p=a.length;for(c;c{"use strict";/*! + * escape-html + * Copyright(c) 2012-2013 TJ Holowaychuk + * Copyright(c) 2015 Andreas Lubbe + * Copyright(c) 2015 Tiancheng "Timothy" Gu + * MIT Licensed + */var Va=/["'&<>]/;qn.exports=za;function za(e){var t=""+e,r=Va.exec(t);if(!r)return t;var o,n="",i=0,s=0;for(i=r.index;i0&&i[i.length-1])&&(p[0]===6||p[0]===2)){r=0;continue}if(p[0]===3&&(!i||p[1]>i[0]&&p[1]=e.length&&(e=void 0),{value:e&&e[o++],done:!e}}};throw new TypeError(t?"Object is not iterable.":"Symbol.iterator is not defined.")}function V(e,t){var r=typeof Symbol=="function"&&e[Symbol.iterator];if(!r)return e;var o=r.call(e),n,i=[],s;try{for(;(t===void 0||t-- >0)&&!(n=o.next()).done;)i.push(n.value)}catch(a){s={error:a}}finally{try{n&&!n.done&&(r=o.return)&&r.call(o)}finally{if(s)throw s.error}}return i}function z(e,t,r){if(r||arguments.length===2)for(var o=0,n=t.length,i;o1||a(u,h)})})}function a(u,h){try{c(o[u](h))}catch(w){f(i[0][3],w)}}function c(u){u.value instanceof ot?Promise.resolve(u.value.v).then(p,l):f(i[0][2],u)}function p(u){a("next",u)}function l(u){a("throw",u)}function f(u,h){u(h),i.shift(),i.length&&a(i[0][0],i[0][1])}}function so(e){if(!Symbol.asyncIterator)throw new TypeError("Symbol.asyncIterator is not defined.");var t=e[Symbol.asyncIterator],r;return t?t.call(e):(e=typeof ue=="function"?ue(e):e[Symbol.iterator](),r={},o("next"),o("throw"),o("return"),r[Symbol.asyncIterator]=function(){return this},r);function o(i){r[i]=e[i]&&function(s){return new Promise(function(a,c){s=e[i](s),n(a,c,s.done,s.value)})}}function n(i,s,a,c){Promise.resolve(c).then(function(p){i({value:p,done:a})},s)}}function k(e){return typeof e=="function"}function pt(e){var t=function(o){Error.call(o),o.stack=new Error().stack},r=e(t);return r.prototype=Object.create(Error.prototype),r.prototype.constructor=r,r}var Wt=pt(function(e){return function(r){e(this),this.message=r?r.length+` errors occurred during unsubscription: +`+r.map(function(o,n){return n+1+") "+o.toString()}).join(` + `):"",this.name="UnsubscriptionError",this.errors=r}});function Ve(e,t){if(e){var r=e.indexOf(t);0<=r&&e.splice(r,1)}}var Ie=function(){function e(t){this.initialTeardown=t,this.closed=!1,this._parentage=null,this._finalizers=null}return e.prototype.unsubscribe=function(){var t,r,o,n,i;if(!this.closed){this.closed=!0;var s=this._parentage;if(s)if(this._parentage=null,Array.isArray(s))try{for(var a=ue(s),c=a.next();!c.done;c=a.next()){var p=c.value;p.remove(this)}}catch(A){t={error:A}}finally{try{c&&!c.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}else s.remove(this);var l=this.initialTeardown;if(k(l))try{l()}catch(A){i=A instanceof Wt?A.errors:[A]}var f=this._finalizers;if(f){this._finalizers=null;try{for(var u=ue(f),h=u.next();!h.done;h=u.next()){var w=h.value;try{co(w)}catch(A){i=i!=null?i:[],A instanceof Wt?i=z(z([],V(i)),V(A.errors)):i.push(A)}}}catch(A){o={error:A}}finally{try{h&&!h.done&&(n=u.return)&&n.call(u)}finally{if(o)throw o.error}}}if(i)throw new Wt(i)}},e.prototype.add=function(t){var r;if(t&&t!==this)if(this.closed)co(t);else{if(t instanceof e){if(t.closed||t._hasParent(this))return;t._addParent(this)}(this._finalizers=(r=this._finalizers)!==null&&r!==void 0?r:[]).push(t)}},e.prototype._hasParent=function(t){var r=this._parentage;return r===t||Array.isArray(r)&&r.includes(t)},e.prototype._addParent=function(t){var r=this._parentage;this._parentage=Array.isArray(r)?(r.push(t),r):r?[r,t]:t},e.prototype._removeParent=function(t){var r=this._parentage;r===t?this._parentage=null:Array.isArray(r)&&Ve(r,t)},e.prototype.remove=function(t){var r=this._finalizers;r&&Ve(r,t),t instanceof e&&t._removeParent(this)},e.EMPTY=function(){var t=new e;return t.closed=!0,t}(),e}();var Er=Ie.EMPTY;function Dt(e){return e instanceof Ie||e&&"closed"in e&&k(e.remove)&&k(e.add)&&k(e.unsubscribe)}function co(e){k(e)?e():e.unsubscribe()}var ke={onUnhandledError:null,onStoppedNotification:null,Promise:void 0,useDeprecatedSynchronousErrorHandling:!1,useDeprecatedNextContext:!1};var lt={setTimeout:function(e,t){for(var r=[],o=2;o0},enumerable:!1,configurable:!0}),t.prototype._trySubscribe=function(r){return this._throwIfClosed(),e.prototype._trySubscribe.call(this,r)},t.prototype._subscribe=function(r){return this._throwIfClosed(),this._checkFinalizedStatuses(r),this._innerSubscribe(r)},t.prototype._innerSubscribe=function(r){var o=this,n=this,i=n.hasError,s=n.isStopped,a=n.observers;return i||s?Er:(this.currentObservers=null,a.push(r),new Ie(function(){o.currentObservers=null,Ve(a,r)}))},t.prototype._checkFinalizedStatuses=function(r){var o=this,n=o.hasError,i=o.thrownError,s=o.isStopped;n?r.error(i):s&&r.complete()},t.prototype.asObservable=function(){var r=new j;return r.source=this,r},t.create=function(r,o){return new vo(r,o)},t}(j);var vo=function(e){se(t,e);function t(r,o){var n=e.call(this)||this;return n.destination=r,n.source=o,n}return t.prototype.next=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.next)===null||n===void 0||n.call(o,r)},t.prototype.error=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.error)===null||n===void 0||n.call(o,r)},t.prototype.complete=function(){var r,o;(o=(r=this.destination)===null||r===void 0?void 0:r.complete)===null||o===void 0||o.call(r)},t.prototype._subscribe=function(r){var o,n;return(n=(o=this.source)===null||o===void 0?void 0:o.subscribe(r))!==null&&n!==void 0?n:Er},t}(v);var St={now:function(){return(St.delegate||Date).now()},delegate:void 0};var Ot=function(e){se(t,e);function t(r,o,n){r===void 0&&(r=1/0),o===void 0&&(o=1/0),n===void 0&&(n=St);var i=e.call(this)||this;return i._bufferSize=r,i._windowTime=o,i._timestampProvider=n,i._buffer=[],i._infiniteTimeWindow=!0,i._infiniteTimeWindow=o===1/0,i._bufferSize=Math.max(1,r),i._windowTime=Math.max(1,o),i}return t.prototype.next=function(r){var o=this,n=o.isStopped,i=o._buffer,s=o._infiniteTimeWindow,a=o._timestampProvider,c=o._windowTime;n||(i.push(r),!s&&i.push(a.now()+c)),this._trimBuffer(),e.prototype.next.call(this,r)},t.prototype._subscribe=function(r){this._throwIfClosed(),this._trimBuffer();for(var o=this._innerSubscribe(r),n=this,i=n._infiniteTimeWindow,s=n._buffer,a=s.slice(),c=0;c0?e.prototype.requestAsyncId.call(this,r,o,n):(r.actions.push(this),r._scheduled||(r._scheduled=ut.requestAnimationFrame(function(){return r.flush(void 0)})))},t.prototype.recycleAsyncId=function(r,o,n){var i;if(n===void 0&&(n=0),n!=null?n>0:this.delay>0)return e.prototype.recycleAsyncId.call(this,r,o,n);var s=r.actions;o!=null&&((i=s[s.length-1])===null||i===void 0?void 0:i.id)!==o&&(ut.cancelAnimationFrame(o),r._scheduled=void 0)},t}(zt);var yo=function(e){se(t,e);function t(){return e!==null&&e.apply(this,arguments)||this}return t.prototype.flush=function(r){this._active=!0;var o=this._scheduled;this._scheduled=void 0;var n=this.actions,i;r=r||n.shift();do if(i=r.execute(r.state,r.delay))break;while((r=n[0])&&r.id===o&&n.shift());if(this._active=!1,i){for(;(r=n[0])&&r.id===o&&n.shift();)r.unsubscribe();throw i}},t}(qt);var de=new yo(xo);var L=new j(function(e){return e.complete()});function Kt(e){return e&&k(e.schedule)}function _r(e){return e[e.length-1]}function Je(e){return k(_r(e))?e.pop():void 0}function Ae(e){return Kt(_r(e))?e.pop():void 0}function Qt(e,t){return typeof _r(e)=="number"?e.pop():t}var dt=function(e){return e&&typeof e.length=="number"&&typeof e!="function"};function Yt(e){return k(e==null?void 0:e.then)}function Bt(e){return k(e[ft])}function Gt(e){return Symbol.asyncIterator&&k(e==null?void 0:e[Symbol.asyncIterator])}function Jt(e){return new TypeError("You provided "+(e!==null&&typeof e=="object"?"an invalid object":"'"+e+"'")+" where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.")}function Di(){return typeof Symbol!="function"||!Symbol.iterator?"@@iterator":Symbol.iterator}var Xt=Di();function Zt(e){return k(e==null?void 0:e[Xt])}function er(e){return ao(this,arguments,function(){var r,o,n,i;return Ut(this,function(s){switch(s.label){case 0:r=e.getReader(),s.label=1;case 1:s.trys.push([1,,9,10]),s.label=2;case 2:return[4,ot(r.read())];case 3:return o=s.sent(),n=o.value,i=o.done,i?[4,ot(void 0)]:[3,5];case 4:return[2,s.sent()];case 5:return[4,ot(n)];case 6:return[4,s.sent()];case 7:return s.sent(),[3,2];case 8:return[3,10];case 9:return r.releaseLock(),[7];case 10:return[2]}})})}function tr(e){return k(e==null?void 0:e.getReader)}function N(e){if(e instanceof j)return e;if(e!=null){if(Bt(e))return Ni(e);if(dt(e))return Vi(e);if(Yt(e))return zi(e);if(Gt(e))return Eo(e);if(Zt(e))return qi(e);if(tr(e))return Ki(e)}throw Jt(e)}function Ni(e){return new j(function(t){var r=e[ft]();if(k(r.subscribe))return r.subscribe(t);throw new TypeError("Provided object does not correctly implement Symbol.observable")})}function Vi(e){return new j(function(t){for(var r=0;r=2;return function(o){return o.pipe(e?g(function(n,i){return e(n,i,o)}):ce,ye(1),r?Qe(t):jo(function(){return new or}))}}function $r(e){return e<=0?function(){return L}:x(function(t,r){var o=[];t.subscribe(S(r,function(n){o.push(n),e=2,!0))}function le(e){e===void 0&&(e={});var t=e.connector,r=t===void 0?function(){return new v}:t,o=e.resetOnError,n=o===void 0?!0:o,i=e.resetOnComplete,s=i===void 0?!0:i,a=e.resetOnRefCountZero,c=a===void 0?!0:a;return function(p){var l,f,u,h=0,w=!1,A=!1,Z=function(){f==null||f.unsubscribe(),f=void 0},te=function(){Z(),l=u=void 0,w=A=!1},J=function(){var C=l;te(),C==null||C.unsubscribe()};return x(function(C,ct){h++,!A&&!w&&Z();var Ne=u=u!=null?u:r();ct.add(function(){h--,h===0&&!A&&!w&&(f=Pr(J,c))}),Ne.subscribe(ct),!l&&h>0&&(l=new it({next:function(Pe){return Ne.next(Pe)},error:function(Pe){A=!0,Z(),f=Pr(te,n,Pe),Ne.error(Pe)},complete:function(){w=!0,Z(),f=Pr(te,s),Ne.complete()}}),N(C).subscribe(l))})(p)}}function Pr(e,t){for(var r=[],o=2;oe.next(document)),e}function R(e,t=document){return Array.from(t.querySelectorAll(e))}function P(e,t=document){let r=me(e,t);if(typeof r=="undefined")throw new ReferenceError(`Missing element: expected "${e}" to be present`);return r}function me(e,t=document){return t.querySelector(e)||void 0}function Re(){var e,t,r,o;return(o=(r=(t=(e=document.activeElement)==null?void 0:e.shadowRoot)==null?void 0:t.activeElement)!=null?r:document.activeElement)!=null?o:void 0}var la=T(d(document.body,"focusin"),d(document.body,"focusout")).pipe(be(1),q(void 0),m(()=>Re()||document.body),B(1));function vt(e){return la.pipe(m(t=>e.contains(t)),Y())}function Vo(e,t){return T(d(e,"mouseenter").pipe(m(()=>!0)),d(e,"mouseleave").pipe(m(()=>!1))).pipe(t?be(t):ce,q(!1))}function Ue(e){return{x:e.offsetLeft,y:e.offsetTop}}function zo(e){return T(d(window,"load"),d(window,"resize")).pipe(Me(0,de),m(()=>Ue(e)),q(Ue(e)))}function ir(e){return{x:e.scrollLeft,y:e.scrollTop}}function et(e){return T(d(e,"scroll"),d(window,"resize")).pipe(Me(0,de),m(()=>ir(e)),q(ir(e)))}function qo(e,t){if(typeof t=="string"||typeof t=="number")e.innerHTML+=t.toString();else if(t instanceof Node)e.appendChild(t);else if(Array.isArray(t))for(let r of t)qo(e,r)}function E(e,t,...r){let o=document.createElement(e);if(t)for(let n of Object.keys(t))typeof t[n]!="undefined"&&(typeof t[n]!="boolean"?o.setAttribute(n,t[n]):o.setAttribute(n,""));for(let n of r)qo(o,n);return o}function ar(e){if(e>999){let t=+((e-950)%1e3>99);return`${((e+1e-6)/1e3).toFixed(t)}k`}else return e.toString()}function gt(e){let t=E("script",{src:e});return H(()=>(document.head.appendChild(t),T(d(t,"load"),d(t,"error").pipe(b(()=>Ar(()=>new ReferenceError(`Invalid script: ${e}`))))).pipe(m(()=>{}),_(()=>document.head.removeChild(t)),ye(1))))}var Ko=new v,ma=H(()=>typeof ResizeObserver=="undefined"?gt("https://unpkg.com/resize-observer-polyfill"):$(void 0)).pipe(m(()=>new ResizeObserver(e=>{for(let t of e)Ko.next(t)})),b(e=>T(qe,$(e)).pipe(_(()=>e.disconnect()))),B(1));function pe(e){return{width:e.offsetWidth,height:e.offsetHeight}}function Ee(e){return ma.pipe(y(t=>t.observe(e)),b(t=>Ko.pipe(g(({target:r})=>r===e),_(()=>t.unobserve(e)),m(()=>pe(e)))),q(pe(e)))}function xt(e){return{width:e.scrollWidth,height:e.scrollHeight}}function sr(e){let t=e.parentElement;for(;t&&(e.scrollWidth<=t.scrollWidth&&e.scrollHeight<=t.scrollHeight);)t=(e=t).parentElement;return t?e:void 0}var Qo=new v,fa=H(()=>$(new IntersectionObserver(e=>{for(let t of e)Qo.next(t)},{threshold:0}))).pipe(b(e=>T(qe,$(e)).pipe(_(()=>e.disconnect()))),B(1));function yt(e){return fa.pipe(y(t=>t.observe(e)),b(t=>Qo.pipe(g(({target:r})=>r===e),_(()=>t.unobserve(e)),m(({isIntersecting:r})=>r))))}function Yo(e,t=16){return et(e).pipe(m(({y:r})=>{let o=pe(e),n=xt(e);return r>=n.height-o.height-t}),Y())}var cr={drawer:P("[data-md-toggle=drawer]"),search:P("[data-md-toggle=search]")};function Bo(e){return cr[e].checked}function Be(e,t){cr[e].checked!==t&&cr[e].click()}function We(e){let t=cr[e];return d(t,"change").pipe(m(()=>t.checked),q(t.checked))}function ua(e,t){switch(e.constructor){case HTMLInputElement:return e.type==="radio"?/^Arrow/.test(t):!0;case HTMLSelectElement:case HTMLTextAreaElement:return!0;default:return e.isContentEditable}}function da(){return T(d(window,"compositionstart").pipe(m(()=>!0)),d(window,"compositionend").pipe(m(()=>!1))).pipe(q(!1))}function Go(){let e=d(window,"keydown").pipe(g(t=>!(t.metaKey||t.ctrlKey)),m(t=>({mode:Bo("search")?"search":"global",type:t.key,claim(){t.preventDefault(),t.stopPropagation()}})),g(({mode:t,type:r})=>{if(t==="global"){let o=Re();if(typeof o!="undefined")return!ua(o,r)}return!0}),le());return da().pipe(b(t=>t?L:e))}function ve(){return new URL(location.href)}function st(e,t=!1){if(G("navigation.instant")&&!t){let r=E("a",{href:e.href});document.body.appendChild(r),r.click(),r.remove()}else location.href=e.href}function Jo(){return new v}function Xo(){return location.hash.slice(1)}function Zo(e){let t=E("a",{href:e});t.addEventListener("click",r=>r.stopPropagation()),t.click()}function ha(e){return T(d(window,"hashchange"),e).pipe(m(Xo),q(Xo()),g(t=>t.length>0),B(1))}function en(e){return ha(e).pipe(m(t=>me(`[id="${t}"]`)),g(t=>typeof t!="undefined"))}function At(e){let t=matchMedia(e);return nr(r=>t.addListener(()=>r(t.matches))).pipe(q(t.matches))}function tn(){let e=matchMedia("print");return T(d(window,"beforeprint").pipe(m(()=>!0)),d(window,"afterprint").pipe(m(()=>!1))).pipe(q(e.matches))}function Ur(e,t){return e.pipe(b(r=>r?t():L))}function Wr(e,t){return new j(r=>{let o=new XMLHttpRequest;return o.open("GET",`${e}`),o.responseType="blob",o.addEventListener("load",()=>{o.status>=200&&o.status<300?(r.next(o.response),r.complete()):r.error(new Error(o.statusText))}),o.addEventListener("error",()=>{r.error(new Error("Network error"))}),o.addEventListener("abort",()=>{r.complete()}),typeof(t==null?void 0:t.progress$)!="undefined"&&(o.addEventListener("progress",n=>{var i;if(n.lengthComputable)t.progress$.next(n.loaded/n.total*100);else{let s=(i=o.getResponseHeader("Content-Length"))!=null?i:0;t.progress$.next(n.loaded/+s*100)}}),t.progress$.next(5)),o.send(),()=>o.abort()})}function De(e,t){return Wr(e,t).pipe(b(r=>r.text()),m(r=>JSON.parse(r)),B(1))}function rn(e,t){let r=new DOMParser;return Wr(e,t).pipe(b(o=>o.text()),m(o=>r.parseFromString(o,"text/html")),B(1))}function on(e,t){let r=new DOMParser;return Wr(e,t).pipe(b(o=>o.text()),m(o=>r.parseFromString(o,"text/xml")),B(1))}function nn(){return{x:Math.max(0,scrollX),y:Math.max(0,scrollY)}}function an(){return T(d(window,"scroll",{passive:!0}),d(window,"resize",{passive:!0})).pipe(m(nn),q(nn()))}function sn(){return{width:innerWidth,height:innerHeight}}function cn(){return d(window,"resize",{passive:!0}).pipe(m(sn),q(sn()))}function pn(){return Q([an(),cn()]).pipe(m(([e,t])=>({offset:e,size:t})),B(1))}function pr(e,{viewport$:t,header$:r}){let o=t.pipe(X("size")),n=Q([o,r]).pipe(m(()=>Ue(e)));return Q([r,t,n]).pipe(m(([{height:i},{offset:s,size:a},{x:c,y:p}])=>({offset:{x:s.x-c,y:s.y-p+i},size:a})))}function ba(e){return d(e,"message",t=>t.data)}function va(e){let t=new v;return t.subscribe(r=>e.postMessage(r)),t}function ln(e,t=new Worker(e)){let r=ba(t),o=va(t),n=new v;n.subscribe(o);let i=o.pipe(ee(),oe(!0));return n.pipe(ee(),$e(r.pipe(U(i))),le())}var ga=P("#__config"),Et=JSON.parse(ga.textContent);Et.base=`${new URL(Et.base,ve())}`;function we(){return Et}function G(e){return Et.features.includes(e)}function ge(e,t){return typeof t!="undefined"?Et.translations[e].replace("#",t.toString()):Et.translations[e]}function Te(e,t=document){return P(`[data-md-component=${e}]`,t)}function ne(e,t=document){return R(`[data-md-component=${e}]`,t)}function xa(e){let t=P(".md-typeset > :first-child",e);return d(t,"click",{once:!0}).pipe(m(()=>P(".md-typeset",e)),m(r=>({hash:__md_hash(r.innerHTML)})))}function mn(e){if(!G("announce.dismiss")||!e.childElementCount)return L;if(!e.hidden){let t=P(".md-typeset",e);__md_hash(t.innerHTML)===__md_get("__announce")&&(e.hidden=!0)}return H(()=>{let t=new v;return t.subscribe(({hash:r})=>{e.hidden=!0,__md_set("__announce",r)}),xa(e).pipe(y(r=>t.next(r)),_(()=>t.complete()),m(r=>F({ref:e},r)))})}function ya(e,{target$:t}){return t.pipe(m(r=>({hidden:r!==e})))}function fn(e,t){let r=new v;return r.subscribe(({hidden:o})=>{e.hidden=o}),ya(e,t).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))}function Ct(e,t){return t==="inline"?E("div",{class:"md-tooltip md-tooltip--inline",id:e,role:"tooltip"},E("div",{class:"md-tooltip__inner md-typeset"})):E("div",{class:"md-tooltip",id:e,role:"tooltip"},E("div",{class:"md-tooltip__inner md-typeset"}))}function un(e,t){if(t=t?`${t}_annotation_${e}`:void 0,t){let r=t?`#${t}`:void 0;return E("aside",{class:"md-annotation",tabIndex:0},Ct(t),E("a",{href:r,class:"md-annotation__index",tabIndex:-1},E("span",{"data-md-annotation-id":e})))}else return E("aside",{class:"md-annotation",tabIndex:0},Ct(t),E("span",{class:"md-annotation__index",tabIndex:-1},E("span",{"data-md-annotation-id":e})))}function dn(e){return E("button",{class:"md-clipboard md-icon",title:ge("clipboard.copy"),"data-clipboard-target":`#${e} > code`})}function Dr(e,t){let r=t&2,o=t&1,n=Object.keys(e.terms).filter(c=>!e.terms[c]).reduce((c,p)=>[...c,E("del",null,p)," "],[]).slice(0,-1),i=we(),s=new URL(e.location,i.base);G("search.highlight")&&s.searchParams.set("h",Object.entries(e.terms).filter(([,c])=>c).reduce((c,[p])=>`${c} ${p}`.trim(),""));let{tags:a}=we();return E("a",{href:`${s}`,class:"md-search-result__link",tabIndex:-1},E("article",{class:"md-search-result__article md-typeset","data-md-score":e.score.toFixed(2)},r>0&&E("div",{class:"md-search-result__icon md-icon"}),r>0&&E("h1",null,e.title),r<=0&&E("h2",null,e.title),o>0&&e.text.length>0&&e.text,e.tags&&e.tags.map(c=>{let p=a?c in a?`md-tag-icon md-tag--${a[c]}`:"md-tag-icon":"";return E("span",{class:`md-tag ${p}`},c)}),o>0&&n.length>0&&E("p",{class:"md-search-result__terms"},ge("search.result.term.missing"),": ",...n)))}function hn(e){let t=e[0].score,r=[...e],o=we(),n=r.findIndex(l=>!`${new URL(l.location,o.base)}`.includes("#")),[i]=r.splice(n,1),s=r.findIndex(l=>l.scoreDr(l,1)),...c.length?[E("details",{class:"md-search-result__more"},E("summary",{tabIndex:-1},E("div",null,c.length>0&&c.length===1?ge("search.result.more.one"):ge("search.result.more.other",c.length))),...c.map(l=>Dr(l,1)))]:[]];return E("li",{class:"md-search-result__item"},p)}function bn(e){return E("ul",{class:"md-source__facts"},Object.entries(e).map(([t,r])=>E("li",{class:`md-source__fact md-source__fact--${t}`},typeof r=="number"?ar(r):r)))}function Nr(e){let t=`tabbed-control tabbed-control--${e}`;return E("div",{class:t,hidden:!0},E("button",{class:"tabbed-button",tabIndex:-1,"aria-hidden":"true"}))}function vn(e){return E("div",{class:"md-typeset__scrollwrap"},E("div",{class:"md-typeset__table"},e))}function Ea(e){let t=we(),r=new URL(`../${e.version}/`,t.base);return E("li",{class:"md-version__item"},E("a",{href:`${r}`,class:"md-version__link"},e.title))}function gn(e,t){return E("div",{class:"md-version"},E("button",{class:"md-version__current","aria-label":ge("select.version")},t.title),E("ul",{class:"md-version__list"},e.map(Ea)))}var wa=0;function Ta(e,t){document.body.append(e);let{width:r}=pe(e);e.style.setProperty("--md-tooltip-width",`${r}px`),e.remove();let o=sr(t),n=typeof o!="undefined"?et(o):$({x:0,y:0}),i=T(vt(t),Vo(t)).pipe(Y());return Q([i,n]).pipe(m(([s,a])=>{let{x:c,y:p}=Ue(t),l=pe(t),f=t.closest("table");return f&&t.parentElement&&(c+=f.offsetLeft+t.parentElement.offsetLeft,p+=f.offsetTop+t.parentElement.offsetTop),{active:s,offset:{x:c-a.x+l.width/2-r/2,y:p-a.y+l.height+8}}}))}function Ge(e){let t=e.title;if(!t.length)return L;let r=`__tooltip_${wa++}`,o=Ct(r,"inline"),n=P(".md-typeset",o);return n.innerHTML=t,H(()=>{let i=new v;return i.subscribe({next({offset:s}){o.style.setProperty("--md-tooltip-x",`${s.x}px`),o.style.setProperty("--md-tooltip-y",`${s.y}px`)},complete(){o.style.removeProperty("--md-tooltip-x"),o.style.removeProperty("--md-tooltip-y")}}),T(i.pipe(g(({active:s})=>s)),i.pipe(be(250),g(({active:s})=>!s))).subscribe({next({active:s}){s?(e.insertAdjacentElement("afterend",o),e.setAttribute("aria-describedby",r),e.removeAttribute("title")):(o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t))},complete(){o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t)}}),i.pipe(Me(16,de)).subscribe(({active:s})=>{o.classList.toggle("md-tooltip--active",s)}),i.pipe(_t(125,de),g(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:s})=>s)).subscribe({next(s){s?o.style.setProperty("--md-tooltip-0",`${-s}px`):o.style.removeProperty("--md-tooltip-0")},complete(){o.style.removeProperty("--md-tooltip-0")}}),Ta(o,e).pipe(y(s=>i.next(s)),_(()=>i.complete()),m(s=>F({ref:e},s)))}).pipe(ze(ie))}function Sa(e,t){let r=H(()=>Q([zo(e),et(t)])).pipe(m(([{x:o,y:n},i])=>{let{width:s,height:a}=pe(e);return{x:o-i.x+s/2,y:n-i.y+a/2}}));return vt(e).pipe(b(o=>r.pipe(m(n=>({active:o,offset:n})),ye(+!o||1/0))))}function xn(e,t,{target$:r}){let[o,n]=Array.from(e.children);return H(()=>{let i=new v,s=i.pipe(ee(),oe(!0));return i.subscribe({next({offset:a}){e.style.setProperty("--md-tooltip-x",`${a.x}px`),e.style.setProperty("--md-tooltip-y",`${a.y}px`)},complete(){e.style.removeProperty("--md-tooltip-x"),e.style.removeProperty("--md-tooltip-y")}}),yt(e).pipe(U(s)).subscribe(a=>{e.toggleAttribute("data-md-visible",a)}),T(i.pipe(g(({active:a})=>a)),i.pipe(be(250),g(({active:a})=>!a))).subscribe({next({active:a}){a?e.prepend(o):o.remove()},complete(){e.prepend(o)}}),i.pipe(Me(16,de)).subscribe(({active:a})=>{o.classList.toggle("md-tooltip--active",a)}),i.pipe(_t(125,de),g(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:a})=>a)).subscribe({next(a){a?e.style.setProperty("--md-tooltip-0",`${-a}px`):e.style.removeProperty("--md-tooltip-0")},complete(){e.style.removeProperty("--md-tooltip-0")}}),d(n,"click").pipe(U(s),g(a=>!(a.metaKey||a.ctrlKey))).subscribe(a=>{a.stopPropagation(),a.preventDefault()}),d(n,"mousedown").pipe(U(s),ae(i)).subscribe(([a,{active:c}])=>{var p;if(a.button!==0||a.metaKey||a.ctrlKey)a.preventDefault();else if(c){a.preventDefault();let l=e.parentElement.closest(".md-annotation");l instanceof HTMLElement?l.focus():(p=Re())==null||p.blur()}}),r.pipe(U(s),g(a=>a===o),Ye(125)).subscribe(()=>e.focus()),Sa(e,t).pipe(y(a=>i.next(a)),_(()=>i.complete()),m(a=>F({ref:e},a)))})}function Oa(e){return e.tagName==="CODE"?R(".c, .c1, .cm",e):[e]}function Ma(e){let t=[];for(let r of Oa(e)){let o=[],n=document.createNodeIterator(r,NodeFilter.SHOW_TEXT);for(let i=n.nextNode();i;i=n.nextNode())o.push(i);for(let i of o){let s;for(;s=/(\(\d+\))(!)?/.exec(i.textContent);){let[,a,c]=s;if(typeof c=="undefined"){let p=i.splitText(s.index);i=p.splitText(a.length),t.push(p)}else{i.textContent=a,t.push(i);break}}}}return t}function yn(e,t){t.append(...Array.from(e.childNodes))}function lr(e,t,{target$:r,print$:o}){let n=t.closest("[id]"),i=n==null?void 0:n.id,s=new Map;for(let a of Ma(t)){let[,c]=a.textContent.match(/\((\d+)\)/);me(`:scope > li:nth-child(${c})`,e)&&(s.set(c,un(c,i)),a.replaceWith(s.get(c)))}return s.size===0?L:H(()=>{let a=new v,c=a.pipe(ee(),oe(!0)),p=[];for(let[l,f]of s)p.push([P(".md-typeset",f),P(`:scope > li:nth-child(${l})`,e)]);return o.pipe(U(c)).subscribe(l=>{e.hidden=!l,e.classList.toggle("md-annotation-list",l);for(let[f,u]of p)l?yn(f,u):yn(u,f)}),T(...[...s].map(([,l])=>xn(l,t,{target$:r}))).pipe(_(()=>a.complete()),le())})}function En(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return En(t)}}function wn(e,t){return H(()=>{let r=En(e);return typeof r!="undefined"?lr(r,e,t):L})}var Tn=jt(zr());var La=0;function Sn(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return Sn(t)}}function _a(e){return Ee(e).pipe(m(({width:t})=>({scrollable:xt(e).width>t})),X("scrollable"))}function On(e,t){let{matches:r}=matchMedia("(hover)"),o=H(()=>{let n=new v,i=n.pipe($r(1));n.subscribe(({scrollable:c})=>{c&&r?e.setAttribute("tabindex","0"):e.removeAttribute("tabindex")});let s=[];if(Tn.default.isSupported()&&(e.closest(".copy")||G("content.code.copy")&&!e.closest(".no-copy"))){let c=e.closest("pre");c.id=`__code_${La++}`;let p=dn(c.id);c.insertBefore(p,e),G("content.tooltips")&&s.push(Ge(p))}let a=e.closest(".highlight");if(a instanceof HTMLElement){let c=Sn(a);if(typeof c!="undefined"&&(a.classList.contains("annotate")||G("content.code.annotate"))){let p=lr(c,e,t);s.push(Ee(a).pipe(U(i),m(({width:l,height:f})=>l&&f),Y(),b(l=>l?p:L)))}}return _a(e).pipe(y(c=>n.next(c)),_(()=>n.complete()),m(c=>F({ref:e},c)),$e(...s))});return G("content.lazy")?yt(e).pipe(g(n=>n),ye(1),b(()=>o)):o}function Aa(e,{target$:t,print$:r}){let o=!0;return T(t.pipe(m(n=>n.closest("details:not([open])")),g(n=>e===n),m(()=>({action:"open",reveal:!0}))),r.pipe(g(n=>n||!o),y(()=>o=e.open),m(n=>({action:n?"open":"close"}))))}function Mn(e,t){return H(()=>{let r=new v;return r.subscribe(({action:o,reveal:n})=>{e.toggleAttribute("open",o==="open"),n&&e.scrollIntoView()}),Aa(e,t).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))})}var Ln=".node circle,.node ellipse,.node path,.node polygon,.node rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}marker{fill:var(--md-mermaid-edge-color)!important}.edgeLabel .label rect{fill:#0000}.label{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.label foreignObject{line-height:normal;overflow:visible}.label div .edgeLabel{color:var(--md-mermaid-label-fg-color)}.edgeLabel,.edgeLabel rect,.label div .edgeLabel{background-color:var(--md-mermaid-label-bg-color)}.edgeLabel,.edgeLabel rect{fill:var(--md-mermaid-label-bg-color);color:var(--md-mermaid-edge-color)}.edgePath .path,.flowchart-link{stroke:var(--md-mermaid-edge-color);stroke-width:.05rem}.edgePath .arrowheadPath{fill:var(--md-mermaid-edge-color);stroke:none}.cluster rect{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}.cluster span{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}g #flowchart-circleEnd,g #flowchart-circleStart,g #flowchart-crossEnd,g #flowchart-crossStart,g #flowchart-pointEnd,g #flowchart-pointStart{stroke:none}g.classGroup line,g.classGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.classGroup text{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.classLabel .box{fill:var(--md-mermaid-label-bg-color);background-color:var(--md-mermaid-label-bg-color);opacity:1}.classLabel .label{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node .divider{stroke:var(--md-mermaid-node-fg-color)}.relation{stroke:var(--md-mermaid-edge-color)}.cardinality{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.cardinality text{fill:inherit!important}defs #classDiagram-compositionEnd,defs #classDiagram-compositionStart,defs #classDiagram-dependencyEnd,defs #classDiagram-dependencyStart,defs #classDiagram-extensionEnd,defs #classDiagram-extensionStart{fill:var(--md-mermaid-edge-color)!important;stroke:var(--md-mermaid-edge-color)!important}defs #classDiagram-aggregationEnd,defs #classDiagram-aggregationStart{fill:var(--md-mermaid-label-bg-color)!important;stroke:var(--md-mermaid-edge-color)!important}g.stateGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.stateGroup .state-title{fill:var(--md-mermaid-label-fg-color)!important;font-family:var(--md-mermaid-font-family)}g.stateGroup .composit{fill:var(--md-mermaid-label-bg-color)}.nodeLabel,.nodeLabel p{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node circle.state-end,.node circle.state-start,.start-state{fill:var(--md-mermaid-edge-color);stroke:none}.end-state-inner,.end-state-outer{fill:var(--md-mermaid-edge-color)}.end-state-inner,.node circle.state-end{stroke:var(--md-mermaid-label-bg-color)}.transition{stroke:var(--md-mermaid-edge-color)}[id^=state-fork] rect,[id^=state-join] rect{fill:var(--md-mermaid-edge-color)!important;stroke:none!important}.statediagram-cluster.statediagram-cluster .inner{fill:var(--md-default-bg-color)}.statediagram-cluster rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.statediagram-state rect.divider{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}defs #statediagram-barbEnd{stroke:var(--md-mermaid-edge-color)}.attributeBoxEven,.attributeBoxOdd{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityBox{fill:var(--md-mermaid-label-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityLabel{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.relationshipLabelBox{fill:var(--md-mermaid-label-bg-color);fill-opacity:1;background-color:var(--md-mermaid-label-bg-color);opacity:1}.relationshipLabel{fill:var(--md-mermaid-label-fg-color)}.relationshipLine{stroke:var(--md-mermaid-edge-color)}defs #ONE_OR_MORE_END *,defs #ONE_OR_MORE_START *,defs #ONLY_ONE_END *,defs #ONLY_ONE_START *,defs #ZERO_OR_MORE_END *,defs #ZERO_OR_MORE_START *,defs #ZERO_OR_ONE_END *,defs #ZERO_OR_ONE_START *{stroke:var(--md-mermaid-edge-color)!important}defs #ZERO_OR_MORE_END circle,defs #ZERO_OR_MORE_START circle{fill:var(--md-mermaid-label-bg-color)}.actor{fill:var(--md-mermaid-sequence-actor-bg-color);stroke:var(--md-mermaid-sequence-actor-border-color)}text.actor>tspan{fill:var(--md-mermaid-sequence-actor-fg-color);font-family:var(--md-mermaid-font-family)}line{stroke:var(--md-mermaid-sequence-actor-line-color)}.actor-man circle,.actor-man line{fill:var(--md-mermaid-sequence-actorman-bg-color);stroke:var(--md-mermaid-sequence-actorman-line-color)}.messageLine0,.messageLine1{stroke:var(--md-mermaid-sequence-message-line-color)}.note{fill:var(--md-mermaid-sequence-note-bg-color);stroke:var(--md-mermaid-sequence-note-border-color)}.loopText,.loopText>tspan,.messageText,.noteText>tspan{stroke:none;font-family:var(--md-mermaid-font-family)!important}.messageText{fill:var(--md-mermaid-sequence-message-fg-color)}.loopText,.loopText>tspan{fill:var(--md-mermaid-sequence-loop-fg-color)}.noteText>tspan{fill:var(--md-mermaid-sequence-note-fg-color)}#arrowhead path{fill:var(--md-mermaid-sequence-message-line-color);stroke:none}.loopLine{fill:var(--md-mermaid-sequence-loop-bg-color);stroke:var(--md-mermaid-sequence-loop-border-color)}.labelBox{fill:var(--md-mermaid-sequence-label-bg-color);stroke:none}.labelText,.labelText>span{fill:var(--md-mermaid-sequence-label-fg-color);font-family:var(--md-mermaid-font-family)}.sequenceNumber{fill:var(--md-mermaid-sequence-number-fg-color)}rect.rect{fill:var(--md-mermaid-sequence-box-bg-color);stroke:none}rect.rect+text.text{fill:var(--md-mermaid-sequence-box-fg-color)}defs #sequencenumber{fill:var(--md-mermaid-sequence-number-bg-color)!important}";var qr,ka=0;function Ha(){return typeof mermaid=="undefined"||mermaid instanceof Element?gt("https://unpkg.com/mermaid@10.7.0/dist/mermaid.min.js"):$(void 0)}function _n(e){return e.classList.remove("mermaid"),qr||(qr=Ha().pipe(y(()=>mermaid.initialize({startOnLoad:!1,themeCSS:Ln,sequence:{actorFontSize:"16px",messageFontSize:"16px",noteFontSize:"16px"}})),m(()=>{}),B(1))),qr.subscribe(()=>ro(this,null,function*(){e.classList.add("mermaid");let t=`__mermaid_${ka++}`,r=E("div",{class:"mermaid"}),o=e.textContent,{svg:n,fn:i}=yield mermaid.render(t,o),s=r.attachShadow({mode:"closed"});s.innerHTML=n,e.replaceWith(r),i==null||i(s)})),qr.pipe(m(()=>({ref:e})))}var An=E("table");function Cn(e){return e.replaceWith(An),An.replaceWith(vn(e)),$({ref:e})}function $a(e){let t=e.find(r=>r.checked)||e[0];return T(...e.map(r=>d(r,"change").pipe(m(()=>P(`label[for="${r.id}"]`))))).pipe(q(P(`label[for="${t.id}"]`)),m(r=>({active:r})))}function kn(e,{viewport$:t,target$:r}){let o=P(".tabbed-labels",e),n=R(":scope > input",e),i=Nr("prev");e.append(i);let s=Nr("next");return e.append(s),H(()=>{let a=new v,c=a.pipe(ee(),oe(!0));Q([a,Ee(e)]).pipe(U(c),Me(1,de)).subscribe({next([{active:p},l]){let f=Ue(p),{width:u}=pe(p);e.style.setProperty("--md-indicator-x",`${f.x}px`),e.style.setProperty("--md-indicator-width",`${u}px`);let h=ir(o);(f.xh.x+l.width)&&o.scrollTo({left:Math.max(0,f.x-16),behavior:"smooth"})},complete(){e.style.removeProperty("--md-indicator-x"),e.style.removeProperty("--md-indicator-width")}}),Q([et(o),Ee(o)]).pipe(U(c)).subscribe(([p,l])=>{let f=xt(o);i.hidden=p.x<16,s.hidden=p.x>f.width-l.width-16}),T(d(i,"click").pipe(m(()=>-1)),d(s,"click").pipe(m(()=>1))).pipe(U(c)).subscribe(p=>{let{width:l}=pe(o);o.scrollBy({left:l*p,behavior:"smooth"})}),r.pipe(U(c),g(p=>n.includes(p))).subscribe(p=>p.click()),o.classList.add("tabbed-labels--linked");for(let p of n){let l=P(`label[for="${p.id}"]`);l.replaceChildren(E("a",{href:`#${l.htmlFor}`,tabIndex:-1},...Array.from(l.childNodes))),d(l.firstElementChild,"click").pipe(U(c),g(f=>!(f.metaKey||f.ctrlKey)),y(f=>{f.preventDefault(),f.stopPropagation()})).subscribe(()=>{history.replaceState({},"",`#${l.htmlFor}`),l.click()})}return G("content.tabs.link")&&a.pipe(Le(1),ae(t)).subscribe(([{active:p},{offset:l}])=>{let f=p.innerText.trim();if(p.hasAttribute("data-md-switching"))p.removeAttribute("data-md-switching");else{let u=e.offsetTop-l.y;for(let w of R("[data-tabs]"))for(let A of R(":scope > input",w)){let Z=P(`label[for="${A.id}"]`);if(Z!==p&&Z.innerText.trim()===f){Z.setAttribute("data-md-switching",""),A.click();break}}window.scrollTo({top:e.offsetTop-u});let h=__md_get("__tabs")||[];__md_set("__tabs",[...new Set([f,...h])])}}),a.pipe(U(c)).subscribe(()=>{for(let p of R("audio, video",e))p.pause()}),$a(n).pipe(y(p=>a.next(p)),_(()=>a.complete()),m(p=>F({ref:e},p)))}).pipe(ze(ie))}function Hn(e,{viewport$:t,target$:r,print$:o}){return T(...R(".annotate:not(.highlight)",e).map(n=>wn(n,{target$:r,print$:o})),...R("pre:not(.mermaid) > code",e).map(n=>On(n,{target$:r,print$:o})),...R("pre.mermaid",e).map(n=>_n(n)),...R("table:not([class])",e).map(n=>Cn(n)),...R("details",e).map(n=>Mn(n,{target$:r,print$:o})),...R("[data-tabs]",e).map(n=>kn(n,{viewport$:t,target$:r})),...R("[title]",e).filter(()=>G("content.tooltips")).map(n=>Ge(n)))}function Ra(e,{alert$:t}){return t.pipe(b(r=>T($(!0),$(!1).pipe(Ye(2e3))).pipe(m(o=>({message:r,active:o})))))}function $n(e,t){let r=P(".md-typeset",e);return H(()=>{let o=new v;return o.subscribe(({message:n,active:i})=>{e.classList.toggle("md-dialog--active",i),r.textContent=n}),Ra(e,t).pipe(y(n=>o.next(n)),_(()=>o.complete()),m(n=>F({ref:e},n)))})}function Pa({viewport$:e}){if(!G("header.autohide"))return $(!1);let t=e.pipe(m(({offset:{y:n}})=>n),Ke(2,1),m(([n,i])=>[nMath.abs(i-n.y)>100),m(([,[n]])=>n),Y()),o=We("search");return Q([e,o]).pipe(m(([{offset:n},i])=>n.y>400&&!i),Y(),b(n=>n?r:$(!1)),q(!1))}function Rn(e,t){return H(()=>Q([Ee(e),Pa(t)])).pipe(m(([{height:r},o])=>({height:r,hidden:o})),Y((r,o)=>r.height===o.height&&r.hidden===o.hidden),B(1))}function Pn(e,{header$:t,main$:r}){return H(()=>{let o=new v,n=o.pipe(ee(),oe(!0));o.pipe(X("active"),je(t)).subscribe(([{active:s},{hidden:a}])=>{e.classList.toggle("md-header--shadow",s&&!a),e.hidden=a});let i=fe(R("[title]",e)).pipe(g(()=>G("content.tooltips")),re(s=>Ge(s)));return r.subscribe(o),t.pipe(U(n),m(s=>F({ref:e},s)),$e(i.pipe(U(n))))})}function Ia(e,{viewport$:t,header$:r}){return pr(e,{viewport$:t,header$:r}).pipe(m(({offset:{y:o}})=>{let{height:n}=pe(e);return{active:o>=n}}),X("active"))}function In(e,t){return H(()=>{let r=new v;r.subscribe({next({active:n}){e.classList.toggle("md-header__title--active",n)},complete(){e.classList.remove("md-header__title--active")}});let o=me(".md-content h1");return typeof o=="undefined"?L:Ia(o,t).pipe(y(n=>r.next(n)),_(()=>r.complete()),m(n=>F({ref:e},n)))})}function Fn(e,{viewport$:t,header$:r}){let o=r.pipe(m(({height:i})=>i),Y()),n=o.pipe(b(()=>Ee(e).pipe(m(({height:i})=>({top:e.offsetTop,bottom:e.offsetTop+i})),X("bottom"))));return Q([o,n,t]).pipe(m(([i,{top:s,bottom:a},{offset:{y:c},size:{height:p}}])=>(p=Math.max(0,p-Math.max(0,s-c,i)-Math.max(0,p+c-a)),{offset:s-i,height:p,active:s-i<=c})),Y((i,s)=>i.offset===s.offset&&i.height===s.height&&i.active===s.active))}function Fa(e){let t=__md_get("__palette")||{index:e.findIndex(o=>matchMedia(o.getAttribute("data-md-color-media")).matches)},r=Math.max(0,Math.min(t.index,e.length-1));return $(...e).pipe(re(o=>d(o,"change").pipe(m(()=>o))),q(e[r]),m(o=>({index:e.indexOf(o),color:{media:o.getAttribute("data-md-color-media"),scheme:o.getAttribute("data-md-color-scheme"),primary:o.getAttribute("data-md-color-primary"),accent:o.getAttribute("data-md-color-accent")}})),B(1))}function jn(e){let t=R("input",e),r=E("meta",{name:"theme-color"});document.head.appendChild(r);let o=E("meta",{name:"color-scheme"});document.head.appendChild(o);let n=At("(prefers-color-scheme: light)");return H(()=>{let i=new v;return i.subscribe(s=>{if(document.body.setAttribute("data-md-color-switching",""),s.color.media==="(prefers-color-scheme)"){let a=matchMedia("(prefers-color-scheme: light)"),c=document.querySelector(a.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']");s.color.scheme=c.getAttribute("data-md-color-scheme"),s.color.primary=c.getAttribute("data-md-color-primary"),s.color.accent=c.getAttribute("data-md-color-accent")}for(let[a,c]of Object.entries(s.color))document.body.setAttribute(`data-md-color-${a}`,c);for(let a=0;a{let s=Te("header"),a=window.getComputedStyle(s);return o.content=a.colorScheme,a.backgroundColor.match(/\d+/g).map(c=>(+c).toString(16).padStart(2,"0")).join("")})).subscribe(s=>r.content=`#${s}`),i.pipe(Oe(ie)).subscribe(()=>{document.body.removeAttribute("data-md-color-switching")}),Fa(t).pipe(U(n.pipe(Le(1))),at(),y(s=>i.next(s)),_(()=>i.complete()),m(s=>F({ref:e},s)))})}function Un(e,{progress$:t}){return H(()=>{let r=new v;return r.subscribe(({value:o})=>{e.style.setProperty("--md-progress-value",`${o}`)}),t.pipe(y(o=>r.next({value:o})),_(()=>r.complete()),m(o=>({ref:e,value:o})))})}var Kr=jt(zr());function ja(e){e.setAttribute("data-md-copying","");let t=e.closest("[data-copy]"),r=t?t.getAttribute("data-copy"):e.innerText;return e.removeAttribute("data-md-copying"),r.trimEnd()}function Wn({alert$:e}){Kr.default.isSupported()&&new j(t=>{new Kr.default("[data-clipboard-target], [data-clipboard-text]",{text:r=>r.getAttribute("data-clipboard-text")||ja(P(r.getAttribute("data-clipboard-target")))}).on("success",r=>t.next(r))}).pipe(y(t=>{t.trigger.focus()}),m(()=>ge("clipboard.copied"))).subscribe(e)}function Dn(e,t){return e.protocol=t.protocol,e.hostname=t.hostname,e}function Ua(e,t){let r=new Map;for(let o of R("url",e)){let n=P("loc",o),i=[Dn(new URL(n.textContent),t)];r.set(`${i[0]}`,i);for(let s of R("[rel=alternate]",o)){let a=s.getAttribute("href");a!=null&&i.push(Dn(new URL(a),t))}}return r}function mr(e){return on(new URL("sitemap.xml",e)).pipe(m(t=>Ua(t,new URL(e))),he(()=>$(new Map)))}function Wa(e,t){if(!(e.target instanceof Element))return L;let r=e.target.closest("a");if(r===null)return L;if(r.target||e.metaKey||e.ctrlKey)return L;let o=new URL(r.href);return o.search=o.hash="",t.has(`${o}`)?(e.preventDefault(),$(new URL(r.href))):L}function Nn(e){let t=new Map;for(let r of R(":scope > *",e.head))t.set(r.outerHTML,r);return t}function Vn(e){for(let t of R("[href], [src]",e))for(let r of["href","src"]){let o=t.getAttribute(r);if(o&&!/^(?:[a-z]+:)?\/\//i.test(o)){t[r]=t[r];break}}return $(e)}function Da(e){for(let o of["[data-md-component=announce]","[data-md-component=container]","[data-md-component=header-topic]","[data-md-component=outdated]","[data-md-component=logo]","[data-md-component=skip]",...G("navigation.tabs.sticky")?["[data-md-component=tabs]"]:[]]){let n=me(o),i=me(o,e);typeof n!="undefined"&&typeof i!="undefined"&&n.replaceWith(i)}let t=Nn(document);for(let[o,n]of Nn(e))t.has(o)?t.delete(o):document.head.appendChild(n);for(let o of t.values()){let n=o.getAttribute("name");n!=="theme-color"&&n!=="color-scheme"&&o.remove()}let r=Te("container");return Fe(R("script",r)).pipe(b(o=>{let n=e.createElement("script");if(o.src){for(let i of o.getAttributeNames())n.setAttribute(i,o.getAttribute(i));return o.replaceWith(n),new j(i=>{n.onload=()=>i.complete()})}else return n.textContent=o.textContent,o.replaceWith(n),L}),ee(),oe(document))}function zn({location$:e,viewport$:t,progress$:r}){let o=we();if(location.protocol==="file:")return L;let n=mr(o.base);$(document).subscribe(Vn);let i=d(document.body,"click").pipe(je(n),b(([c,p])=>Wa(c,p)),le()),s=d(window,"popstate").pipe(m(ve),le());i.pipe(ae(t)).subscribe(([c,{offset:p}])=>{history.replaceState(p,""),history.pushState(null,"",c)}),T(i,s).subscribe(e);let a=e.pipe(X("pathname"),b(c=>rn(c,{progress$:r}).pipe(he(()=>(st(c,!0),L)))),b(Vn),b(Da),le());return T(a.pipe(ae(e,(c,p)=>p)),e.pipe(X("pathname"),b(()=>e),X("hash")),e.pipe(Y((c,p)=>c.pathname===p.pathname&&c.hash===p.hash),b(()=>i),y(()=>history.back()))).subscribe(c=>{var p,l;history.state!==null||!c.hash?window.scrollTo(0,(l=(p=history.state)==null?void 0:p.y)!=null?l:0):(history.scrollRestoration="auto",Zo(c.hash),history.scrollRestoration="manual")}),e.subscribe(()=>{history.scrollRestoration="manual"}),d(window,"beforeunload").subscribe(()=>{history.scrollRestoration="auto"}),t.pipe(X("offset"),be(100)).subscribe(({offset:c})=>{history.replaceState(c,"")}),a}var Qn=jt(Kn());function Yn(e){let t=e.separator.split("|").map(n=>n.replace(/(\(\?[!=<][^)]+\))/g,"").length===0?"\uFFFD":n).join("|"),r=new RegExp(t,"img"),o=(n,i,s)=>`${i}${s}`;return n=>{n=n.replace(/[\s*+\-:~^]+/g," ").trim();let i=new RegExp(`(^|${e.separator}|)(${n.replace(/[|\\{}()[\]^$+*?.-]/g,"\\$&").replace(r,"|")})`,"img");return s=>(0,Qn.default)(s).replace(i,o).replace(/<\/mark>(\s+)]*>/img,"$1")}}function Ht(e){return e.type===1}function fr(e){return e.type===3}function Bn(e,t){let r=ln(e);return T($(location.protocol!=="file:"),We("search")).pipe(He(o=>o),b(()=>t)).subscribe(({config:o,docs:n})=>r.next({type:0,data:{config:o,docs:n,options:{suggest:G("search.suggest")}}})),r}function Gn({document$:e}){let t=we(),r=De(new URL("../versions.json",t.base)).pipe(he(()=>L)),o=r.pipe(m(n=>{let[,i]=t.base.match(/([^/]+)\/?$/);return n.find(({version:s,aliases:a})=>s===i||a.includes(i))||n[0]}));r.pipe(m(n=>new Map(n.map(i=>[`${new URL(`../${i.version}/`,t.base)}`,i]))),b(n=>d(document.body,"click").pipe(g(i=>!i.metaKey&&!i.ctrlKey),ae(o),b(([i,s])=>{if(i.target instanceof Element){let a=i.target.closest("a");if(a&&!a.target&&n.has(a.href)){let c=a.href;return!i.target.closest(".md-version")&&n.get(c)===s?L:(i.preventDefault(),$(c))}}return L}),b(i=>{let{version:s}=n.get(i);return mr(new URL(i)).pipe(m(a=>{let p=ve().href.replace(t.base,"");return a.has(p.split("#")[0])?new URL(`../${s}/${p}`,t.base):new URL(i)}))})))).subscribe(n=>st(n,!0)),Q([r,o]).subscribe(([n,i])=>{P(".md-header__topic").appendChild(gn(n,i))}),e.pipe(b(()=>o)).subscribe(n=>{var s;let i=__md_get("__outdated",sessionStorage);if(i===null){i=!0;let a=((s=t.version)==null?void 0:s.default)||"latest";Array.isArray(a)||(a=[a]);e:for(let c of a)for(let p of n.aliases.concat(n.version))if(new RegExp(c,"i").test(p)){i=!1;break e}__md_set("__outdated",i,sessionStorage)}if(i)for(let a of ne("outdated"))a.hidden=!1})}function Ka(e,{worker$:t}){let{searchParams:r}=ve();r.has("q")&&(Be("search",!0),e.value=r.get("q"),e.focus(),We("search").pipe(He(i=>!i)).subscribe(()=>{let i=ve();i.searchParams.delete("q"),history.replaceState({},"",`${i}`)}));let o=vt(e),n=T(t.pipe(He(Ht)),d(e,"keyup"),o).pipe(m(()=>e.value),Y());return Q([n,o]).pipe(m(([i,s])=>({value:i,focus:s})),B(1))}function Jn(e,{worker$:t}){let r=new v,o=r.pipe(ee(),oe(!0));Q([t.pipe(He(Ht)),r],(i,s)=>s).pipe(X("value")).subscribe(({value:i})=>t.next({type:2,data:i})),r.pipe(X("focus")).subscribe(({focus:i})=>{i&&Be("search",i)}),d(e.form,"reset").pipe(U(o)).subscribe(()=>e.focus());let n=P("header [for=__search]");return d(n,"click").subscribe(()=>e.focus()),Ka(e,{worker$:t}).pipe(y(i=>r.next(i)),_(()=>r.complete()),m(i=>F({ref:e},i)),B(1))}function Xn(e,{worker$:t,query$:r}){let o=new v,n=Yo(e.parentElement).pipe(g(Boolean)),i=e.parentElement,s=P(":scope > :first-child",e),a=P(":scope > :last-child",e);We("search").subscribe(l=>a.setAttribute("role",l?"list":"presentation")),o.pipe(ae(r),Ir(t.pipe(He(Ht)))).subscribe(([{items:l},{value:f}])=>{switch(l.length){case 0:s.textContent=f.length?ge("search.result.none"):ge("search.result.placeholder");break;case 1:s.textContent=ge("search.result.one");break;default:let u=ar(l.length);s.textContent=ge("search.result.other",u)}});let c=o.pipe(y(()=>a.innerHTML=""),b(({items:l})=>T($(...l.slice(0,10)),$(...l.slice(10)).pipe(Ke(4),jr(n),b(([f])=>f)))),m(hn),le());return c.subscribe(l=>a.appendChild(l)),c.pipe(re(l=>{let f=me("details",l);return typeof f=="undefined"?L:d(f,"toggle").pipe(U(o),m(()=>f))})).subscribe(l=>{l.open===!1&&l.offsetTop<=i.scrollTop&&i.scrollTo({top:l.offsetTop})}),t.pipe(g(fr),m(({data:l})=>l)).pipe(y(l=>o.next(l)),_(()=>o.complete()),m(l=>F({ref:e},l)))}function Qa(e,{query$:t}){return t.pipe(m(({value:r})=>{let o=ve();return o.hash="",r=r.replace(/\s+/g,"+").replace(/&/g,"%26").replace(/=/g,"%3D"),o.search=`q=${r}`,{url:o}}))}function Zn(e,t){let r=new v,o=r.pipe(ee(),oe(!0));return r.subscribe(({url:n})=>{e.setAttribute("data-clipboard-text",e.href),e.href=`${n}`}),d(e,"click").pipe(U(o)).subscribe(n=>n.preventDefault()),Qa(e,t).pipe(y(n=>r.next(n)),_(()=>r.complete()),m(n=>F({ref:e},n)))}function ei(e,{worker$:t,keyboard$:r}){let o=new v,n=Te("search-query"),i=T(d(n,"keydown"),d(n,"focus")).pipe(Oe(ie),m(()=>n.value),Y());return o.pipe(je(i),m(([{suggest:a},c])=>{let p=c.split(/([\s-]+)/);if(a!=null&&a.length&&p[p.length-1]){let l=a[a.length-1];l.startsWith(p[p.length-1])&&(p[p.length-1]=l)}else p.length=0;return p})).subscribe(a=>e.innerHTML=a.join("").replace(/\s/g," ")),r.pipe(g(({mode:a})=>a==="search")).subscribe(a=>{switch(a.type){case"ArrowRight":e.innerText.length&&n.selectionStart===n.value.length&&(n.value=e.innerText);break}}),t.pipe(g(fr),m(({data:a})=>a)).pipe(y(a=>o.next(a)),_(()=>o.complete()),m(()=>({ref:e})))}function ti(e,{index$:t,keyboard$:r}){let o=we();try{let n=Bn(o.search,t),i=Te("search-query",e),s=Te("search-result",e);d(e,"click").pipe(g(({target:c})=>c instanceof Element&&!!c.closest("a"))).subscribe(()=>Be("search",!1)),r.pipe(g(({mode:c})=>c==="search")).subscribe(c=>{let p=Re();switch(c.type){case"Enter":if(p===i){let l=new Map;for(let f of R(":first-child [href]",s)){let u=f.firstElementChild;l.set(f,parseFloat(u.getAttribute("data-md-score")))}if(l.size){let[[f]]=[...l].sort(([,u],[,h])=>h-u);f.click()}c.claim()}break;case"Escape":case"Tab":Be("search",!1),i.blur();break;case"ArrowUp":case"ArrowDown":if(typeof p=="undefined")i.focus();else{let l=[i,...R(":not(details) > [href], summary, details[open] [href]",s)],f=Math.max(0,(Math.max(0,l.indexOf(p))+l.length+(c.type==="ArrowUp"?-1:1))%l.length);l[f].focus()}c.claim();break;default:i!==Re()&&i.focus()}}),r.pipe(g(({mode:c})=>c==="global")).subscribe(c=>{switch(c.type){case"f":case"s":case"/":i.focus(),i.select(),c.claim();break}});let a=Jn(i,{worker$:n});return T(a,Xn(s,{worker$:n,query$:a})).pipe($e(...ne("search-share",e).map(c=>Zn(c,{query$:a})),...ne("search-suggest",e).map(c=>ei(c,{worker$:n,keyboard$:r}))))}catch(n){return e.hidden=!0,qe}}function ri(e,{index$:t,location$:r}){return Q([t,r.pipe(q(ve()),g(o=>!!o.searchParams.get("h")))]).pipe(m(([o,n])=>Yn(o.config)(n.searchParams.get("h"))),m(o=>{var s;let n=new Map,i=document.createNodeIterator(e,NodeFilter.SHOW_TEXT);for(let a=i.nextNode();a;a=i.nextNode())if((s=a.parentElement)!=null&&s.offsetHeight){let c=a.textContent,p=o(c);p.length>c.length&&n.set(a,p)}for(let[a,c]of n){let{childNodes:p}=E("span",null,c);a.replaceWith(...Array.from(p))}return{ref:e,nodes:n}}))}function Ya(e,{viewport$:t,main$:r}){let o=e.closest(".md-grid"),n=o.offsetTop-o.parentElement.offsetTop;return Q([r,t]).pipe(m(([{offset:i,height:s},{offset:{y:a}}])=>(s=s+Math.min(n,Math.max(0,a-i))-n,{height:s,locked:a>=i+n})),Y((i,s)=>i.height===s.height&&i.locked===s.locked))}function Qr(e,o){var n=o,{header$:t}=n,r=to(n,["header$"]);let i=P(".md-sidebar__scrollwrap",e),{y:s}=Ue(i);return H(()=>{let a=new v,c=a.pipe(ee(),oe(!0)),p=a.pipe(Me(0,de));return p.pipe(ae(t)).subscribe({next([{height:l},{height:f}]){i.style.height=`${l-2*s}px`,e.style.top=`${f}px`},complete(){i.style.height="",e.style.top=""}}),p.pipe(He()).subscribe(()=>{for(let l of R(".md-nav__link--active[href]",e)){if(!l.clientHeight)continue;let f=l.closest(".md-sidebar__scrollwrap");if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:h}=pe(f);f.scrollTo({top:u-h/2})}}}),fe(R("label[tabindex]",e)).pipe(re(l=>d(l,"click").pipe(Oe(ie),m(()=>l),U(c)))).subscribe(l=>{let f=P(`[id="${l.htmlFor}"]`);P(`[aria-labelledby="${l.id}"]`).setAttribute("aria-expanded",`${f.checked}`)}),Ya(e,r).pipe(y(l=>a.next(l)),_(()=>a.complete()),m(l=>F({ref:e},l)))})}function oi(e,t){if(typeof t!="undefined"){let r=`https://api.github.com/repos/${e}/${t}`;return Lt(De(`${r}/releases/latest`).pipe(he(()=>L),m(o=>({version:o.tag_name})),Qe({})),De(r).pipe(he(()=>L),m(o=>({stars:o.stargazers_count,forks:o.forks_count})),Qe({}))).pipe(m(([o,n])=>F(F({},o),n)))}else{let r=`https://api.github.com/users/${e}`;return De(r).pipe(m(o=>({repositories:o.public_repos})),Qe({}))}}function ni(e,t){let r=`https://${e}/api/v4/projects/${encodeURIComponent(t)}`;return De(r).pipe(he(()=>L),m(({star_count:o,forks_count:n})=>({stars:o,forks:n})),Qe({}))}function ii(e){let t=e.match(/^.+github\.com\/([^/]+)\/?([^/]+)?/i);if(t){let[,r,o]=t;return oi(r,o)}if(t=e.match(/^.+?([^/]*gitlab[^/]+)\/(.+?)\/?$/i),t){let[,r,o]=t;return ni(r,o)}return L}var Ba;function Ga(e){return Ba||(Ba=H(()=>{let t=__md_get("__source",sessionStorage);if(t)return $(t);if(ne("consent").length){let o=__md_get("__consent");if(!(o&&o.github))return L}return ii(e.href).pipe(y(o=>__md_set("__source",o,sessionStorage)))}).pipe(he(()=>L),g(t=>Object.keys(t).length>0),m(t=>({facts:t})),B(1)))}function ai(e){let t=P(":scope > :last-child",e);return H(()=>{let r=new v;return r.subscribe(({facts:o})=>{t.appendChild(bn(o)),t.classList.add("md-source__repository--active")}),Ga(e).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))})}function Ja(e,{viewport$:t,header$:r}){return Ee(document.body).pipe(b(()=>pr(e,{header$:r,viewport$:t})),m(({offset:{y:o}})=>({hidden:o>=10})),X("hidden"))}function si(e,t){return H(()=>{let r=new v;return r.subscribe({next({hidden:o}){e.hidden=o},complete(){e.hidden=!1}}),(G("navigation.tabs.sticky")?$({hidden:!1}):Ja(e,t)).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))})}function Xa(e,{viewport$:t,header$:r}){let o=new Map,n=R(".md-nav__link",e);for(let a of n){let c=decodeURIComponent(a.hash.substring(1)),p=me(`[id="${c}"]`);typeof p!="undefined"&&o.set(a,p)}let i=r.pipe(X("height"),m(({height:a})=>{let c=Te("main"),p=P(":scope > :first-child",c);return a+.8*(p.offsetTop-c.offsetTop)}),le());return Ee(document.body).pipe(X("height"),b(a=>H(()=>{let c=[];return $([...o].reduce((p,[l,f])=>{for(;c.length&&o.get(c[c.length-1]).tagName>=f.tagName;)c.pop();let u=f.offsetTop;for(;!u&&f.parentElement;)f=f.parentElement,u=f.offsetTop;let h=f.offsetParent;for(;h;h=h.offsetParent)u+=h.offsetTop;return p.set([...c=[...c,l]].reverse(),u)},new Map))}).pipe(m(c=>new Map([...c].sort(([,p],[,l])=>p-l))),je(i),b(([c,p])=>t.pipe(Rr(([l,f],{offset:{y:u},size:h})=>{let w=u+h.height>=Math.floor(a.height);for(;f.length;){let[,A]=f[0];if(A-p=u&&!w)f=[l.pop(),...f];else break}return[l,f]},[[],[...c]]),Y((l,f)=>l[0]===f[0]&&l[1]===f[1])))))).pipe(m(([a,c])=>({prev:a.map(([p])=>p),next:c.map(([p])=>p)})),q({prev:[],next:[]}),Ke(2,1),m(([a,c])=>a.prev.length{let i=new v,s=i.pipe(ee(),oe(!0));if(i.subscribe(({prev:a,next:c})=>{for(let[p]of c)p.classList.remove("md-nav__link--passed"),p.classList.remove("md-nav__link--active");for(let[p,[l]]of a.entries())l.classList.add("md-nav__link--passed"),l.classList.toggle("md-nav__link--active",p===a.length-1)}),G("toc.follow")){let a=T(t.pipe(be(1),m(()=>{})),t.pipe(be(250),m(()=>"smooth")));i.pipe(g(({prev:c})=>c.length>0),je(o.pipe(Oe(ie))),ae(a)).subscribe(([[{prev:c}],p])=>{let[l]=c[c.length-1];if(l.offsetHeight){let f=sr(l);if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:h}=pe(f);f.scrollTo({top:u-h/2,behavior:p})}}})}return G("navigation.tracking")&&t.pipe(U(s),X("offset"),be(250),Le(1),U(n.pipe(Le(1))),at({delay:250}),ae(i)).subscribe(([,{prev:a}])=>{let c=ve(),p=a[a.length-1];if(p&&p.length){let[l]=p,{hash:f}=new URL(l.href);c.hash!==f&&(c.hash=f,history.replaceState({},"",`${c}`))}else c.hash="",history.replaceState({},"",`${c}`)}),Xa(e,{viewport$:t,header$:r}).pipe(y(a=>i.next(a)),_(()=>i.complete()),m(a=>F({ref:e},a)))})}function Za(e,{viewport$:t,main$:r,target$:o}){let n=t.pipe(m(({offset:{y:s}})=>s),Ke(2,1),m(([s,a])=>s>a&&a>0),Y()),i=r.pipe(m(({active:s})=>s));return Q([i,n]).pipe(m(([s,a])=>!(s&&a)),Y(),U(o.pipe(Le(1))),oe(!0),at({delay:250}),m(s=>({hidden:s})))}function pi(e,{viewport$:t,header$:r,main$:o,target$:n}){let i=new v,s=i.pipe(ee(),oe(!0));return i.subscribe({next({hidden:a}){e.hidden=a,a?(e.setAttribute("tabindex","-1"),e.blur()):e.removeAttribute("tabindex")},complete(){e.style.top="",e.hidden=!0,e.removeAttribute("tabindex")}}),r.pipe(U(s),X("height")).subscribe(({height:a})=>{e.style.top=`${a+16}px`}),d(e,"click").subscribe(a=>{a.preventDefault(),window.scrollTo({top:0})}),Za(e,{viewport$:t,main$:o,target$:n}).pipe(y(a=>i.next(a)),_(()=>i.complete()),m(a=>F({ref:e},a)))}function li({document$:e}){e.pipe(b(()=>R(".md-ellipsis")),re(t=>yt(t).pipe(U(e.pipe(Le(1))),g(r=>r),m(()=>t),ye(1))),g(t=>t.offsetWidth{let r=t.innerText,o=t.closest("a")||t;return o.title=r,Ge(o).pipe(U(e.pipe(Le(1))),_(()=>o.removeAttribute("title")))})).subscribe(),e.pipe(b(()=>R(".md-status")),re(t=>Ge(t))).subscribe()}function mi({document$:e,tablet$:t}){e.pipe(b(()=>R(".md-toggle--indeterminate")),y(r=>{r.indeterminate=!0,r.checked=!1}),re(r=>d(r,"change").pipe(Fr(()=>r.classList.contains("md-toggle--indeterminate")),m(()=>r))),ae(t)).subscribe(([r,o])=>{r.classList.remove("md-toggle--indeterminate"),o&&(r.checked=!1)})}function es(){return/(iPad|iPhone|iPod)/.test(navigator.userAgent)}function fi({document$:e}){e.pipe(b(()=>R("[data-md-scrollfix]")),y(t=>t.removeAttribute("data-md-scrollfix")),g(es),re(t=>d(t,"touchstart").pipe(m(()=>t)))).subscribe(t=>{let r=t.scrollTop;r===0?t.scrollTop=1:r+t.offsetHeight===t.scrollHeight&&(t.scrollTop=r-1)})}function ui({viewport$:e,tablet$:t}){Q([We("search"),t]).pipe(m(([r,o])=>r&&!o),b(r=>$(r).pipe(Ye(r?400:100))),ae(e)).subscribe(([r,{offset:{y:o}}])=>{if(r)document.body.setAttribute("data-md-scrolllock",""),document.body.style.top=`-${o}px`;else{let n=-1*parseInt(document.body.style.top,10);document.body.removeAttribute("data-md-scrolllock"),document.body.style.top="",n&&window.scrollTo(0,n)}})}Object.entries||(Object.entries=function(e){let t=[];for(let r of Object.keys(e))t.push([r,e[r]]);return t});Object.values||(Object.values=function(e){let t=[];for(let r of Object.keys(e))t.push(e[r]);return t});typeof Element!="undefined"&&(Element.prototype.scrollTo||(Element.prototype.scrollTo=function(e,t){typeof e=="object"?(this.scrollLeft=e.left,this.scrollTop=e.top):(this.scrollLeft=e,this.scrollTop=t)}),Element.prototype.replaceWith||(Element.prototype.replaceWith=function(...e){let t=this.parentNode;if(t){e.length===0&&t.removeChild(this);for(let r=e.length-1;r>=0;r--){let o=e[r];typeof o=="string"?o=document.createTextNode(o):o.parentNode&&o.parentNode.removeChild(o),r?t.insertBefore(this.previousSibling,o):t.replaceChild(o,this)}}}));function ts(){return location.protocol==="file:"?gt(`${new URL("search/search_index.js",Yr.base)}`).pipe(m(()=>__index),B(1)):De(new URL("search/search_index.json",Yr.base))}document.documentElement.classList.remove("no-js");document.documentElement.classList.add("js");var rt=No(),Rt=Jo(),wt=en(Rt),Br=Go(),_e=pn(),ur=At("(min-width: 960px)"),hi=At("(min-width: 1220px)"),bi=tn(),Yr=we(),vi=document.forms.namedItem("search")?ts():qe,Gr=new v;Wn({alert$:Gr});var Jr=new v;G("navigation.instant")&&zn({location$:Rt,viewport$:_e,progress$:Jr}).subscribe(rt);var di;((di=Yr.version)==null?void 0:di.provider)==="mike"&&Gn({document$:rt});T(Rt,wt).pipe(Ye(125)).subscribe(()=>{Be("drawer",!1),Be("search",!1)});Br.pipe(g(({mode:e})=>e==="global")).subscribe(e=>{switch(e.type){case"p":case",":let t=me("link[rel=prev]");typeof t!="undefined"&&st(t);break;case"n":case".":let r=me("link[rel=next]");typeof r!="undefined"&&st(r);break;case"Enter":let o=Re();o instanceof HTMLLabelElement&&o.click()}});li({document$:rt});mi({document$:rt,tablet$:ur});fi({document$:rt});ui({viewport$:_e,tablet$:ur});var tt=Rn(Te("header"),{viewport$:_e}),$t=rt.pipe(m(()=>Te("main")),b(e=>Fn(e,{viewport$:_e,header$:tt})),B(1)),rs=T(...ne("consent").map(e=>fn(e,{target$:wt})),...ne("dialog").map(e=>$n(e,{alert$:Gr})),...ne("header").map(e=>Pn(e,{viewport$:_e,header$:tt,main$:$t})),...ne("palette").map(e=>jn(e)),...ne("progress").map(e=>Un(e,{progress$:Jr})),...ne("search").map(e=>ti(e,{index$:vi,keyboard$:Br})),...ne("source").map(e=>ai(e))),os=H(()=>T(...ne("announce").map(e=>mn(e)),...ne("content").map(e=>Hn(e,{viewport$:_e,target$:wt,print$:bi})),...ne("content").map(e=>G("search.highlight")?ri(e,{index$:vi,location$:Rt}):L),...ne("header-title").map(e=>In(e,{viewport$:_e,header$:tt})),...ne("sidebar").map(e=>e.getAttribute("data-md-type")==="navigation"?Ur(hi,()=>Qr(e,{viewport$:_e,header$:tt,main$:$t})):Ur(ur,()=>Qr(e,{viewport$:_e,header$:tt,main$:$t}))),...ne("tabs").map(e=>si(e,{viewport$:_e,header$:tt})),...ne("toc").map(e=>ci(e,{viewport$:_e,header$:tt,main$:$t,target$:wt})),...ne("top").map(e=>pi(e,{viewport$:_e,header$:tt,main$:$t,target$:wt})))),gi=rt.pipe(b(()=>os),$e(rs),B(1));gi.subscribe();window.document$=rt;window.location$=Rt;window.target$=wt;window.keyboard$=Br;window.viewport$=_e;window.tablet$=ur;window.screen$=hi;window.print$=bi;window.alert$=Gr;window.progress$=Jr;window.component$=gi;})(); +//# sourceMappingURL=bundle.c8d2eff1.min.js.map + diff --git a/assets/javascripts/bundle.c8d2eff1.min.js.map b/assets/javascripts/bundle.c8d2eff1.min.js.map new file mode 100644 index 00000000..fc522dba --- /dev/null +++ b/assets/javascripts/bundle.c8d2eff1.min.js.map @@ -0,0 +1,7 @@ +{ + "version": 3, + "sources": ["node_modules/focus-visible/dist/focus-visible.js", "node_modules/clipboard/dist/clipboard.js", "node_modules/escape-html/index.js", "src/templates/assets/javascripts/bundle.ts", "node_modules/rxjs/node_modules/tslib/tslib.es6.js", "node_modules/rxjs/src/internal/util/isFunction.ts", "node_modules/rxjs/src/internal/util/createErrorClass.ts", "node_modules/rxjs/src/internal/util/UnsubscriptionError.ts", "node_modules/rxjs/src/internal/util/arrRemove.ts", "node_modules/rxjs/src/internal/Subscription.ts", "node_modules/rxjs/src/internal/config.ts", "node_modules/rxjs/src/internal/scheduler/timeoutProvider.ts", "node_modules/rxjs/src/internal/util/reportUnhandledError.ts", "node_modules/rxjs/src/internal/util/noop.ts", "node_modules/rxjs/src/internal/NotificationFactories.ts", "node_modules/rxjs/src/internal/util/errorContext.ts", "node_modules/rxjs/src/internal/Subscriber.ts", "node_modules/rxjs/src/internal/symbol/observable.ts", "node_modules/rxjs/src/internal/util/identity.ts", "node_modules/rxjs/src/internal/util/pipe.ts", "node_modules/rxjs/src/internal/Observable.ts", "node_modules/rxjs/src/internal/util/lift.ts", "node_modules/rxjs/src/internal/operators/OperatorSubscriber.ts", "node_modules/rxjs/src/internal/scheduler/animationFrameProvider.ts", "node_modules/rxjs/src/internal/util/ObjectUnsubscribedError.ts", "node_modules/rxjs/src/internal/Subject.ts", "node_modules/rxjs/src/internal/scheduler/dateTimestampProvider.ts", "node_modules/rxjs/src/internal/ReplaySubject.ts", "node_modules/rxjs/src/internal/scheduler/Action.ts", "node_modules/rxjs/src/internal/scheduler/intervalProvider.ts", "node_modules/rxjs/src/internal/scheduler/AsyncAction.ts", "node_modules/rxjs/src/internal/Scheduler.ts", "node_modules/rxjs/src/internal/scheduler/AsyncScheduler.ts", "node_modules/rxjs/src/internal/scheduler/async.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameAction.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameScheduler.ts", "node_modules/rxjs/src/internal/scheduler/animationFrame.ts", "node_modules/rxjs/src/internal/observable/empty.ts", "node_modules/rxjs/src/internal/util/isScheduler.ts", "node_modules/rxjs/src/internal/util/args.ts", "node_modules/rxjs/src/internal/util/isArrayLike.ts", "node_modules/rxjs/src/internal/util/isPromise.ts", "node_modules/rxjs/src/internal/util/isInteropObservable.ts", "node_modules/rxjs/src/internal/util/isAsyncIterable.ts", "node_modules/rxjs/src/internal/util/throwUnobservableError.ts", "node_modules/rxjs/src/internal/symbol/iterator.ts", "node_modules/rxjs/src/internal/util/isIterable.ts", "node_modules/rxjs/src/internal/util/isReadableStreamLike.ts", "node_modules/rxjs/src/internal/observable/innerFrom.ts", "node_modules/rxjs/src/internal/util/executeSchedule.ts", "node_modules/rxjs/src/internal/operators/observeOn.ts", "node_modules/rxjs/src/internal/operators/subscribeOn.ts", "node_modules/rxjs/src/internal/scheduled/scheduleObservable.ts", "node_modules/rxjs/src/internal/scheduled/schedulePromise.ts", "node_modules/rxjs/src/internal/scheduled/scheduleArray.ts", "node_modules/rxjs/src/internal/scheduled/scheduleIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleAsyncIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleReadableStreamLike.ts", "node_modules/rxjs/src/internal/scheduled/scheduled.ts", "node_modules/rxjs/src/internal/observable/from.ts", "node_modules/rxjs/src/internal/observable/of.ts", "node_modules/rxjs/src/internal/observable/throwError.ts", "node_modules/rxjs/src/internal/util/EmptyError.ts", "node_modules/rxjs/src/internal/util/isDate.ts", "node_modules/rxjs/src/internal/operators/map.ts", "node_modules/rxjs/src/internal/util/mapOneOrManyArgs.ts", "node_modules/rxjs/src/internal/util/argsArgArrayOrObject.ts", "node_modules/rxjs/src/internal/util/createObject.ts", "node_modules/rxjs/src/internal/observable/combineLatest.ts", "node_modules/rxjs/src/internal/operators/mergeInternals.ts", "node_modules/rxjs/src/internal/operators/mergeMap.ts", "node_modules/rxjs/src/internal/operators/mergeAll.ts", "node_modules/rxjs/src/internal/operators/concatAll.ts", "node_modules/rxjs/src/internal/observable/concat.ts", "node_modules/rxjs/src/internal/observable/defer.ts", "node_modules/rxjs/src/internal/observable/fromEvent.ts", "node_modules/rxjs/src/internal/observable/fromEventPattern.ts", "node_modules/rxjs/src/internal/observable/timer.ts", "node_modules/rxjs/src/internal/observable/merge.ts", "node_modules/rxjs/src/internal/observable/never.ts", "node_modules/rxjs/src/internal/util/argsOrArgArray.ts", "node_modules/rxjs/src/internal/operators/filter.ts", "node_modules/rxjs/src/internal/observable/zip.ts", "node_modules/rxjs/src/internal/operators/audit.ts", "node_modules/rxjs/src/internal/operators/auditTime.ts", "node_modules/rxjs/src/internal/operators/bufferCount.ts", "node_modules/rxjs/src/internal/operators/catchError.ts", "node_modules/rxjs/src/internal/operators/scanInternals.ts", "node_modules/rxjs/src/internal/operators/combineLatest.ts", "node_modules/rxjs/src/internal/operators/combineLatestWith.ts", "node_modules/rxjs/src/internal/operators/debounceTime.ts", "node_modules/rxjs/src/internal/operators/defaultIfEmpty.ts", "node_modules/rxjs/src/internal/operators/take.ts", "node_modules/rxjs/src/internal/operators/ignoreElements.ts", "node_modules/rxjs/src/internal/operators/mapTo.ts", "node_modules/rxjs/src/internal/operators/delayWhen.ts", "node_modules/rxjs/src/internal/operators/delay.ts", "node_modules/rxjs/src/internal/operators/distinctUntilChanged.ts", "node_modules/rxjs/src/internal/operators/distinctUntilKeyChanged.ts", "node_modules/rxjs/src/internal/operators/throwIfEmpty.ts", "node_modules/rxjs/src/internal/operators/endWith.ts", "node_modules/rxjs/src/internal/operators/finalize.ts", "node_modules/rxjs/src/internal/operators/first.ts", "node_modules/rxjs/src/internal/operators/takeLast.ts", "node_modules/rxjs/src/internal/operators/merge.ts", "node_modules/rxjs/src/internal/operators/mergeWith.ts", "node_modules/rxjs/src/internal/operators/repeat.ts", "node_modules/rxjs/src/internal/operators/scan.ts", "node_modules/rxjs/src/internal/operators/share.ts", "node_modules/rxjs/src/internal/operators/shareReplay.ts", "node_modules/rxjs/src/internal/operators/skip.ts", "node_modules/rxjs/src/internal/operators/skipUntil.ts", "node_modules/rxjs/src/internal/operators/startWith.ts", "node_modules/rxjs/src/internal/operators/switchMap.ts", "node_modules/rxjs/src/internal/operators/takeUntil.ts", "node_modules/rxjs/src/internal/operators/takeWhile.ts", "node_modules/rxjs/src/internal/operators/tap.ts", "node_modules/rxjs/src/internal/operators/throttle.ts", "node_modules/rxjs/src/internal/operators/throttleTime.ts", "node_modules/rxjs/src/internal/operators/withLatestFrom.ts", "node_modules/rxjs/src/internal/operators/zip.ts", "node_modules/rxjs/src/internal/operators/zipWith.ts", "src/templates/assets/javascripts/browser/document/index.ts", "src/templates/assets/javascripts/browser/element/_/index.ts", "src/templates/assets/javascripts/browser/element/focus/index.ts", "src/templates/assets/javascripts/browser/element/hover/index.ts", "src/templates/assets/javascripts/browser/element/offset/_/index.ts", "src/templates/assets/javascripts/browser/element/offset/content/index.ts", "src/templates/assets/javascripts/utilities/h/index.ts", "src/templates/assets/javascripts/utilities/round/index.ts", "src/templates/assets/javascripts/browser/script/index.ts", "src/templates/assets/javascripts/browser/element/size/_/index.ts", "src/templates/assets/javascripts/browser/element/size/content/index.ts", "src/templates/assets/javascripts/browser/element/visibility/index.ts", "src/templates/assets/javascripts/browser/toggle/index.ts", "src/templates/assets/javascripts/browser/keyboard/index.ts", "src/templates/assets/javascripts/browser/location/_/index.ts", "src/templates/assets/javascripts/browser/location/hash/index.ts", "src/templates/assets/javascripts/browser/media/index.ts", "src/templates/assets/javascripts/browser/request/index.ts", "src/templates/assets/javascripts/browser/viewport/offset/index.ts", "src/templates/assets/javascripts/browser/viewport/size/index.ts", "src/templates/assets/javascripts/browser/viewport/_/index.ts", "src/templates/assets/javascripts/browser/viewport/at/index.ts", "src/templates/assets/javascripts/browser/worker/index.ts", "src/templates/assets/javascripts/_/index.ts", "src/templates/assets/javascripts/components/_/index.ts", "src/templates/assets/javascripts/components/announce/index.ts", "src/templates/assets/javascripts/components/consent/index.ts", "src/templates/assets/javascripts/templates/tooltip/index.tsx", "src/templates/assets/javascripts/templates/annotation/index.tsx", "src/templates/assets/javascripts/templates/clipboard/index.tsx", "src/templates/assets/javascripts/templates/search/index.tsx", "src/templates/assets/javascripts/templates/source/index.tsx", "src/templates/assets/javascripts/templates/tabbed/index.tsx", "src/templates/assets/javascripts/templates/table/index.tsx", "src/templates/assets/javascripts/templates/version/index.tsx", "src/templates/assets/javascripts/components/tooltip/index.ts", "src/templates/assets/javascripts/components/content/annotation/_/index.ts", "src/templates/assets/javascripts/components/content/annotation/list/index.ts", "src/templates/assets/javascripts/components/content/annotation/block/index.ts", "src/templates/assets/javascripts/components/content/code/_/index.ts", "src/templates/assets/javascripts/components/content/details/index.ts", "src/templates/assets/javascripts/components/content/mermaid/index.css", "src/templates/assets/javascripts/components/content/mermaid/index.ts", "src/templates/assets/javascripts/components/content/table/index.ts", "src/templates/assets/javascripts/components/content/tabs/index.ts", "src/templates/assets/javascripts/components/content/_/index.ts", "src/templates/assets/javascripts/components/dialog/index.ts", "src/templates/assets/javascripts/components/header/_/index.ts", "src/templates/assets/javascripts/components/header/title/index.ts", "src/templates/assets/javascripts/components/main/index.ts", "src/templates/assets/javascripts/components/palette/index.ts", "src/templates/assets/javascripts/components/progress/index.ts", "src/templates/assets/javascripts/integrations/clipboard/index.ts", "src/templates/assets/javascripts/integrations/sitemap/index.ts", "src/templates/assets/javascripts/integrations/instant/index.ts", "src/templates/assets/javascripts/integrations/search/highlighter/index.ts", "src/templates/assets/javascripts/integrations/search/worker/message/index.ts", "src/templates/assets/javascripts/integrations/search/worker/_/index.ts", "src/templates/assets/javascripts/integrations/version/index.ts", "src/templates/assets/javascripts/components/search/query/index.ts", "src/templates/assets/javascripts/components/search/result/index.ts", "src/templates/assets/javascripts/components/search/share/index.ts", "src/templates/assets/javascripts/components/search/suggest/index.ts", "src/templates/assets/javascripts/components/search/_/index.ts", "src/templates/assets/javascripts/components/search/highlight/index.ts", "src/templates/assets/javascripts/components/sidebar/index.ts", "src/templates/assets/javascripts/components/source/facts/github/index.ts", "src/templates/assets/javascripts/components/source/facts/gitlab/index.ts", "src/templates/assets/javascripts/components/source/facts/_/index.ts", "src/templates/assets/javascripts/components/source/_/index.ts", "src/templates/assets/javascripts/components/tabs/index.ts", "src/templates/assets/javascripts/components/toc/index.ts", "src/templates/assets/javascripts/components/top/index.ts", "src/templates/assets/javascripts/patches/ellipsis/index.ts", "src/templates/assets/javascripts/patches/indeterminate/index.ts", "src/templates/assets/javascripts/patches/scrollfix/index.ts", "src/templates/assets/javascripts/patches/scrolllock/index.ts", "src/templates/assets/javascripts/polyfills/index.ts"], + "sourcesContent": ["(function (global, factory) {\n typeof exports === 'object' && typeof module !== 'undefined' ? factory() :\n typeof define === 'function' && define.amd ? define(factory) :\n (factory());\n}(this, (function () { 'use strict';\n\n /**\n * Applies the :focus-visible polyfill at the given scope.\n * A scope in this case is either the top-level Document or a Shadow Root.\n *\n * @param {(Document|ShadowRoot)} scope\n * @see https://github.com/WICG/focus-visible\n */\n function applyFocusVisiblePolyfill(scope) {\n var hadKeyboardEvent = true;\n var hadFocusVisibleRecently = false;\n var hadFocusVisibleRecentlyTimeout = null;\n\n var inputTypesAllowlist = {\n text: true,\n search: true,\n url: true,\n tel: true,\n email: true,\n password: true,\n number: true,\n date: true,\n month: true,\n week: true,\n time: true,\n datetime: true,\n 'datetime-local': true\n };\n\n /**\n * Helper function for legacy browsers and iframes which sometimes focus\n * elements like document, body, and non-interactive SVG.\n * @param {Element} el\n */\n function isValidFocusTarget(el) {\n if (\n el &&\n el !== document &&\n el.nodeName !== 'HTML' &&\n el.nodeName !== 'BODY' &&\n 'classList' in el &&\n 'contains' in el.classList\n ) {\n return true;\n }\n return false;\n }\n\n /**\n * Computes whether the given element should automatically trigger the\n * `focus-visible` class being added, i.e. whether it should always match\n * `:focus-visible` when focused.\n * @param {Element} el\n * @return {boolean}\n */\n function focusTriggersKeyboardModality(el) {\n var type = el.type;\n var tagName = el.tagName;\n\n if (tagName === 'INPUT' && inputTypesAllowlist[type] && !el.readOnly) {\n return true;\n }\n\n if (tagName === 'TEXTAREA' && !el.readOnly) {\n return true;\n }\n\n if (el.isContentEditable) {\n return true;\n }\n\n return false;\n }\n\n /**\n * Add the `focus-visible` class to the given element if it was not added by\n * the author.\n * @param {Element} el\n */\n function addFocusVisibleClass(el) {\n if (el.classList.contains('focus-visible')) {\n return;\n }\n el.classList.add('focus-visible');\n el.setAttribute('data-focus-visible-added', '');\n }\n\n /**\n * Remove the `focus-visible` class from the given element if it was not\n * originally added by the author.\n * @param {Element} el\n */\n function removeFocusVisibleClass(el) {\n if (!el.hasAttribute('data-focus-visible-added')) {\n return;\n }\n el.classList.remove('focus-visible');\n el.removeAttribute('data-focus-visible-added');\n }\n\n /**\n * If the most recent user interaction was via the keyboard;\n * and the key press did not include a meta, alt/option, or control key;\n * then the modality is keyboard. Otherwise, the modality is not keyboard.\n * Apply `focus-visible` to any current active element and keep track\n * of our keyboard modality state with `hadKeyboardEvent`.\n * @param {KeyboardEvent} e\n */\n function onKeyDown(e) {\n if (e.metaKey || e.altKey || e.ctrlKey) {\n return;\n }\n\n if (isValidFocusTarget(scope.activeElement)) {\n addFocusVisibleClass(scope.activeElement);\n }\n\n hadKeyboardEvent = true;\n }\n\n /**\n * If at any point a user clicks with a pointing device, ensure that we change\n * the modality away from keyboard.\n * This avoids the situation where a user presses a key on an already focused\n * element, and then clicks on a different element, focusing it with a\n * pointing device, while we still think we're in keyboard modality.\n * @param {Event} e\n */\n function onPointerDown(e) {\n hadKeyboardEvent = false;\n }\n\n /**\n * On `focus`, add the `focus-visible` class to the target if:\n * - the target received focus as a result of keyboard navigation, or\n * - the event target is an element that will likely require interaction\n * via the keyboard (e.g. a text box)\n * @param {Event} e\n */\n function onFocus(e) {\n // Prevent IE from focusing the document or HTML element.\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (hadKeyboardEvent || focusTriggersKeyboardModality(e.target)) {\n addFocusVisibleClass(e.target);\n }\n }\n\n /**\n * On `blur`, remove the `focus-visible` class from the target.\n * @param {Event} e\n */\n function onBlur(e) {\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (\n e.target.classList.contains('focus-visible') ||\n e.target.hasAttribute('data-focus-visible-added')\n ) {\n // To detect a tab/window switch, we look for a blur event followed\n // rapidly by a visibility change.\n // If we don't see a visibility change within 100ms, it's probably a\n // regular focus change.\n hadFocusVisibleRecently = true;\n window.clearTimeout(hadFocusVisibleRecentlyTimeout);\n hadFocusVisibleRecentlyTimeout = window.setTimeout(function() {\n hadFocusVisibleRecently = false;\n }, 100);\n removeFocusVisibleClass(e.target);\n }\n }\n\n /**\n * If the user changes tabs, keep track of whether or not the previously\n * focused element had .focus-visible.\n * @param {Event} e\n */\n function onVisibilityChange(e) {\n if (document.visibilityState === 'hidden') {\n // If the tab becomes active again, the browser will handle calling focus\n // on the element (Safari actually calls it twice).\n // If this tab change caused a blur on an element with focus-visible,\n // re-apply the class when the user switches back to the tab.\n if (hadFocusVisibleRecently) {\n hadKeyboardEvent = true;\n }\n addInitialPointerMoveListeners();\n }\n }\n\n /**\n * Add a group of listeners to detect usage of any pointing devices.\n * These listeners will be added when the polyfill first loads, and anytime\n * the window is blurred, so that they are active when the window regains\n * focus.\n */\n function addInitialPointerMoveListeners() {\n document.addEventListener('mousemove', onInitialPointerMove);\n document.addEventListener('mousedown', onInitialPointerMove);\n document.addEventListener('mouseup', onInitialPointerMove);\n document.addEventListener('pointermove', onInitialPointerMove);\n document.addEventListener('pointerdown', onInitialPointerMove);\n document.addEventListener('pointerup', onInitialPointerMove);\n document.addEventListener('touchmove', onInitialPointerMove);\n document.addEventListener('touchstart', onInitialPointerMove);\n document.addEventListener('touchend', onInitialPointerMove);\n }\n\n function removeInitialPointerMoveListeners() {\n document.removeEventListener('mousemove', onInitialPointerMove);\n document.removeEventListener('mousedown', onInitialPointerMove);\n document.removeEventListener('mouseup', onInitialPointerMove);\n document.removeEventListener('pointermove', onInitialPointerMove);\n document.removeEventListener('pointerdown', onInitialPointerMove);\n document.removeEventListener('pointerup', onInitialPointerMove);\n document.removeEventListener('touchmove', onInitialPointerMove);\n document.removeEventListener('touchstart', onInitialPointerMove);\n document.removeEventListener('touchend', onInitialPointerMove);\n }\n\n /**\n * When the polfyill first loads, assume the user is in keyboard modality.\n * If any event is received from a pointing device (e.g. mouse, pointer,\n * touch), turn off keyboard modality.\n * This accounts for situations where focus enters the page from the URL bar.\n * @param {Event} e\n */\n function onInitialPointerMove(e) {\n // Work around a Safari quirk that fires a mousemove on whenever the\n // window blurs, even if you're tabbing out of the page. \u00AF\\_(\u30C4)_/\u00AF\n if (e.target.nodeName && e.target.nodeName.toLowerCase() === 'html') {\n return;\n }\n\n hadKeyboardEvent = false;\n removeInitialPointerMoveListeners();\n }\n\n // For some kinds of state, we are interested in changes at the global scope\n // only. For example, global pointer input, global key presses and global\n // visibility change should affect the state at every scope:\n document.addEventListener('keydown', onKeyDown, true);\n document.addEventListener('mousedown', onPointerDown, true);\n document.addEventListener('pointerdown', onPointerDown, true);\n document.addEventListener('touchstart', onPointerDown, true);\n document.addEventListener('visibilitychange', onVisibilityChange, true);\n\n addInitialPointerMoveListeners();\n\n // For focus and blur, we specifically care about state changes in the local\n // scope. This is because focus / blur events that originate from within a\n // shadow root are not re-dispatched from the host element if it was already\n // the active element in its own scope:\n scope.addEventListener('focus', onFocus, true);\n scope.addEventListener('blur', onBlur, true);\n\n // We detect that a node is a ShadowRoot by ensuring that it is a\n // DocumentFragment and also has a host property. This check covers native\n // implementation and polyfill implementation transparently. If we only cared\n // about the native implementation, we could just check if the scope was\n // an instance of a ShadowRoot.\n if (scope.nodeType === Node.DOCUMENT_FRAGMENT_NODE && scope.host) {\n // Since a ShadowRoot is a special kind of DocumentFragment, it does not\n // have a root element to add a class to. So, we add this attribute to the\n // host element instead:\n scope.host.setAttribute('data-js-focus-visible', '');\n } else if (scope.nodeType === Node.DOCUMENT_NODE) {\n document.documentElement.classList.add('js-focus-visible');\n document.documentElement.setAttribute('data-js-focus-visible', '');\n }\n }\n\n // It is important to wrap all references to global window and document in\n // these checks to support server-side rendering use cases\n // @see https://github.com/WICG/focus-visible/issues/199\n if (typeof window !== 'undefined' && typeof document !== 'undefined') {\n // Make the polyfill helper globally available. This can be used as a signal\n // to interested libraries that wish to coordinate with the polyfill for e.g.,\n // applying the polyfill to a shadow root:\n window.applyFocusVisiblePolyfill = applyFocusVisiblePolyfill;\n\n // Notify interested libraries of the polyfill's presence, in case the\n // polyfill was loaded lazily:\n var event;\n\n try {\n event = new CustomEvent('focus-visible-polyfill-ready');\n } catch (error) {\n // IE11 does not support using CustomEvent as a constructor directly:\n event = document.createEvent('CustomEvent');\n event.initCustomEvent('focus-visible-polyfill-ready', false, false, {});\n }\n\n window.dispatchEvent(event);\n }\n\n if (typeof document !== 'undefined') {\n // Apply the polyfill to the global document, so that no JavaScript\n // coordination is required to use the polyfill in the top-level document:\n applyFocusVisiblePolyfill(document);\n }\n\n})));\n", "/*!\n * clipboard.js v2.0.11\n * https://clipboardjs.com/\n *\n * Licensed MIT \u00A9 Zeno Rocha\n */\n(function webpackUniversalModuleDefinition(root, factory) {\n\tif(typeof exports === 'object' && typeof module === 'object')\n\t\tmodule.exports = factory();\n\telse if(typeof define === 'function' && define.amd)\n\t\tdefine([], factory);\n\telse if(typeof exports === 'object')\n\t\texports[\"ClipboardJS\"] = factory();\n\telse\n\t\troot[\"ClipboardJS\"] = factory();\n})(this, function() {\nreturn /******/ (function() { // webpackBootstrap\n/******/ \tvar __webpack_modules__ = ({\n\n/***/ 686:\n/***/ (function(__unused_webpack_module, __webpack_exports__, __webpack_require__) {\n\n\"use strict\";\n\n// EXPORTS\n__webpack_require__.d(__webpack_exports__, {\n \"default\": function() { return /* binding */ clipboard; }\n});\n\n// EXTERNAL MODULE: ./node_modules/tiny-emitter/index.js\nvar tiny_emitter = __webpack_require__(279);\nvar tiny_emitter_default = /*#__PURE__*/__webpack_require__.n(tiny_emitter);\n// EXTERNAL MODULE: ./node_modules/good-listener/src/listen.js\nvar listen = __webpack_require__(370);\nvar listen_default = /*#__PURE__*/__webpack_require__.n(listen);\n// EXTERNAL MODULE: ./node_modules/select/src/select.js\nvar src_select = __webpack_require__(817);\nvar select_default = /*#__PURE__*/__webpack_require__.n(src_select);\n;// CONCATENATED MODULE: ./src/common/command.js\n/**\n * Executes a given operation type.\n * @param {String} type\n * @return {Boolean}\n */\nfunction command(type) {\n try {\n return document.execCommand(type);\n } catch (err) {\n return false;\n }\n}\n;// CONCATENATED MODULE: ./src/actions/cut.js\n\n\n/**\n * Cut action wrapper.\n * @param {String|HTMLElement} target\n * @return {String}\n */\n\nvar ClipboardActionCut = function ClipboardActionCut(target) {\n var selectedText = select_default()(target);\n command('cut');\n return selectedText;\n};\n\n/* harmony default export */ var actions_cut = (ClipboardActionCut);\n;// CONCATENATED MODULE: ./src/common/create-fake-element.js\n/**\n * Creates a fake textarea element with a value.\n * @param {String} value\n * @return {HTMLElement}\n */\nfunction createFakeElement(value) {\n var isRTL = document.documentElement.getAttribute('dir') === 'rtl';\n var fakeElement = document.createElement('textarea'); // Prevent zooming on iOS\n\n fakeElement.style.fontSize = '12pt'; // Reset box model\n\n fakeElement.style.border = '0';\n fakeElement.style.padding = '0';\n fakeElement.style.margin = '0'; // Move element out of screen horizontally\n\n fakeElement.style.position = 'absolute';\n fakeElement.style[isRTL ? 'right' : 'left'] = '-9999px'; // Move element to the same position vertically\n\n var yPosition = window.pageYOffset || document.documentElement.scrollTop;\n fakeElement.style.top = \"\".concat(yPosition, \"px\");\n fakeElement.setAttribute('readonly', '');\n fakeElement.value = value;\n return fakeElement;\n}\n;// CONCATENATED MODULE: ./src/actions/copy.js\n\n\n\n/**\n * Create fake copy action wrapper using a fake element.\n * @param {String} target\n * @param {Object} options\n * @return {String}\n */\n\nvar fakeCopyAction = function fakeCopyAction(value, options) {\n var fakeElement = createFakeElement(value);\n options.container.appendChild(fakeElement);\n var selectedText = select_default()(fakeElement);\n command('copy');\n fakeElement.remove();\n return selectedText;\n};\n/**\n * Copy action wrapper.\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @return {String}\n */\n\n\nvar ClipboardActionCopy = function ClipboardActionCopy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n var selectedText = '';\n\n if (typeof target === 'string') {\n selectedText = fakeCopyAction(target, options);\n } else if (target instanceof HTMLInputElement && !['text', 'search', 'url', 'tel', 'password'].includes(target === null || target === void 0 ? void 0 : target.type)) {\n // If input type doesn't support `setSelectionRange`. Simulate it. https://developer.mozilla.org/en-US/docs/Web/API/HTMLInputElement/setSelectionRange\n selectedText = fakeCopyAction(target.value, options);\n } else {\n selectedText = select_default()(target);\n command('copy');\n }\n\n return selectedText;\n};\n\n/* harmony default export */ var actions_copy = (ClipboardActionCopy);\n;// CONCATENATED MODULE: ./src/actions/default.js\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\n\n\n/**\n * Inner function which performs selection from either `text` or `target`\n * properties and then executes copy or cut operations.\n * @param {Object} options\n */\n\nvar ClipboardActionDefault = function ClipboardActionDefault() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n // Defines base properties passed from constructor.\n var _options$action = options.action,\n action = _options$action === void 0 ? 'copy' : _options$action,\n container = options.container,\n target = options.target,\n text = options.text; // Sets the `action` to be performed which can be either 'copy' or 'cut'.\n\n if (action !== 'copy' && action !== 'cut') {\n throw new Error('Invalid \"action\" value, use either \"copy\" or \"cut\"');\n } // Sets the `target` property using an element that will be have its content copied.\n\n\n if (target !== undefined) {\n if (target && _typeof(target) === 'object' && target.nodeType === 1) {\n if (action === 'copy' && target.hasAttribute('disabled')) {\n throw new Error('Invalid \"target\" attribute. Please use \"readonly\" instead of \"disabled\" attribute');\n }\n\n if (action === 'cut' && (target.hasAttribute('readonly') || target.hasAttribute('disabled'))) {\n throw new Error('Invalid \"target\" attribute. You can\\'t cut text from elements with \"readonly\" or \"disabled\" attributes');\n }\n } else {\n throw new Error('Invalid \"target\" value, use a valid Element');\n }\n } // Define selection strategy based on `text` property.\n\n\n if (text) {\n return actions_copy(text, {\n container: container\n });\n } // Defines which selection strategy based on `target` property.\n\n\n if (target) {\n return action === 'cut' ? actions_cut(target) : actions_copy(target, {\n container: container\n });\n }\n};\n\n/* harmony default export */ var actions_default = (ClipboardActionDefault);\n;// CONCATENATED MODULE: ./src/clipboard.js\nfunction clipboard_typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { clipboard_typeof = function _typeof(obj) { return typeof obj; }; } else { clipboard_typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return clipboard_typeof(obj); }\n\nfunction _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError(\"Cannot call a class as a function\"); } }\n\nfunction _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (\"value\" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }\n\nfunction _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); return Constructor; }\n\nfunction _inherits(subClass, superClass) { if (typeof superClass !== \"function\" && superClass !== null) { throw new TypeError(\"Super expression must either be null or a function\"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); if (superClass) _setPrototypeOf(subClass, superClass); }\n\nfunction _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); }\n\nfunction _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; }\n\nfunction _possibleConstructorReturn(self, call) { if (call && (clipboard_typeof(call) === \"object\" || typeof call === \"function\")) { return call; } return _assertThisInitialized(self); }\n\nfunction _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\"); } return self; }\n\nfunction _isNativeReflectConstruct() { if (typeof Reflect === \"undefined\" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === \"function\") return true; try { Date.prototype.toString.call(Reflect.construct(Date, [], function () {})); return true; } catch (e) { return false; } }\n\nfunction _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); }\n\n\n\n\n\n\n/**\n * Helper function to retrieve attribute value.\n * @param {String} suffix\n * @param {Element} element\n */\n\nfunction getAttributeValue(suffix, element) {\n var attribute = \"data-clipboard-\".concat(suffix);\n\n if (!element.hasAttribute(attribute)) {\n return;\n }\n\n return element.getAttribute(attribute);\n}\n/**\n * Base class which takes one or more elements, adds event listeners to them,\n * and instantiates a new `ClipboardAction` on each click.\n */\n\n\nvar Clipboard = /*#__PURE__*/function (_Emitter) {\n _inherits(Clipboard, _Emitter);\n\n var _super = _createSuper(Clipboard);\n\n /**\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n * @param {Object} options\n */\n function Clipboard(trigger, options) {\n var _this;\n\n _classCallCheck(this, Clipboard);\n\n _this = _super.call(this);\n\n _this.resolveOptions(options);\n\n _this.listenClick(trigger);\n\n return _this;\n }\n /**\n * Defines if attributes would be resolved using internal setter functions\n * or custom functions that were passed in the constructor.\n * @param {Object} options\n */\n\n\n _createClass(Clipboard, [{\n key: \"resolveOptions\",\n value: function resolveOptions() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n this.action = typeof options.action === 'function' ? options.action : this.defaultAction;\n this.target = typeof options.target === 'function' ? options.target : this.defaultTarget;\n this.text = typeof options.text === 'function' ? options.text : this.defaultText;\n this.container = clipboard_typeof(options.container) === 'object' ? options.container : document.body;\n }\n /**\n * Adds a click event listener to the passed trigger.\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n */\n\n }, {\n key: \"listenClick\",\n value: function listenClick(trigger) {\n var _this2 = this;\n\n this.listener = listen_default()(trigger, 'click', function (e) {\n return _this2.onClick(e);\n });\n }\n /**\n * Defines a new `ClipboardAction` on each click event.\n * @param {Event} e\n */\n\n }, {\n key: \"onClick\",\n value: function onClick(e) {\n var trigger = e.delegateTarget || e.currentTarget;\n var action = this.action(trigger) || 'copy';\n var text = actions_default({\n action: action,\n container: this.container,\n target: this.target(trigger),\n text: this.text(trigger)\n }); // Fires an event based on the copy operation result.\n\n this.emit(text ? 'success' : 'error', {\n action: action,\n text: text,\n trigger: trigger,\n clearSelection: function clearSelection() {\n if (trigger) {\n trigger.focus();\n }\n\n window.getSelection().removeAllRanges();\n }\n });\n }\n /**\n * Default `action` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultAction\",\n value: function defaultAction(trigger) {\n return getAttributeValue('action', trigger);\n }\n /**\n * Default `target` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultTarget\",\n value: function defaultTarget(trigger) {\n var selector = getAttributeValue('target', trigger);\n\n if (selector) {\n return document.querySelector(selector);\n }\n }\n /**\n * Allow fire programmatically a copy action\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @returns Text copied.\n */\n\n }, {\n key: \"defaultText\",\n\n /**\n * Default `text` lookup function.\n * @param {Element} trigger\n */\n value: function defaultText(trigger) {\n return getAttributeValue('text', trigger);\n }\n /**\n * Destroy lifecycle.\n */\n\n }, {\n key: \"destroy\",\n value: function destroy() {\n this.listener.destroy();\n }\n }], [{\n key: \"copy\",\n value: function copy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n return actions_copy(target, options);\n }\n /**\n * Allow fire programmatically a cut action\n * @param {String|HTMLElement} target\n * @returns Text cutted.\n */\n\n }, {\n key: \"cut\",\n value: function cut(target) {\n return actions_cut(target);\n }\n /**\n * Returns the support of the given action, or all actions if no action is\n * given.\n * @param {String} [action]\n */\n\n }, {\n key: \"isSupported\",\n value: function isSupported() {\n var action = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : ['copy', 'cut'];\n var actions = typeof action === 'string' ? [action] : action;\n var support = !!document.queryCommandSupported;\n actions.forEach(function (action) {\n support = support && !!document.queryCommandSupported(action);\n });\n return support;\n }\n }]);\n\n return Clipboard;\n}((tiny_emitter_default()));\n\n/* harmony default export */ var clipboard = (Clipboard);\n\n/***/ }),\n\n/***/ 828:\n/***/ (function(module) {\n\nvar DOCUMENT_NODE_TYPE = 9;\n\n/**\n * A polyfill for Element.matches()\n */\nif (typeof Element !== 'undefined' && !Element.prototype.matches) {\n var proto = Element.prototype;\n\n proto.matches = proto.matchesSelector ||\n proto.mozMatchesSelector ||\n proto.msMatchesSelector ||\n proto.oMatchesSelector ||\n proto.webkitMatchesSelector;\n}\n\n/**\n * Finds the closest parent that matches a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @return {Function}\n */\nfunction closest (element, selector) {\n while (element && element.nodeType !== DOCUMENT_NODE_TYPE) {\n if (typeof element.matches === 'function' &&\n element.matches(selector)) {\n return element;\n }\n element = element.parentNode;\n }\n}\n\nmodule.exports = closest;\n\n\n/***/ }),\n\n/***/ 438:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar closest = __webpack_require__(828);\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction _delegate(element, selector, type, callback, useCapture) {\n var listenerFn = listener.apply(this, arguments);\n\n element.addEventListener(type, listenerFn, useCapture);\n\n return {\n destroy: function() {\n element.removeEventListener(type, listenerFn, useCapture);\n }\n }\n}\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element|String|Array} [elements]\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction delegate(elements, selector, type, callback, useCapture) {\n // Handle the regular Element usage\n if (typeof elements.addEventListener === 'function') {\n return _delegate.apply(null, arguments);\n }\n\n // Handle Element-less usage, it defaults to global delegation\n if (typeof type === 'function') {\n // Use `document` as the first parameter, then apply arguments\n // This is a short way to .unshift `arguments` without running into deoptimizations\n return _delegate.bind(null, document).apply(null, arguments);\n }\n\n // Handle Selector-based usage\n if (typeof elements === 'string') {\n elements = document.querySelectorAll(elements);\n }\n\n // Handle Array-like based usage\n return Array.prototype.map.call(elements, function (element) {\n return _delegate(element, selector, type, callback, useCapture);\n });\n}\n\n/**\n * Finds closest match and invokes callback.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Function}\n */\nfunction listener(element, selector, type, callback) {\n return function(e) {\n e.delegateTarget = closest(e.target, selector);\n\n if (e.delegateTarget) {\n callback.call(element, e);\n }\n }\n}\n\nmodule.exports = delegate;\n\n\n/***/ }),\n\n/***/ 879:\n/***/ (function(__unused_webpack_module, exports) {\n\n/**\n * Check if argument is a HTML element.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.node = function(value) {\n return value !== undefined\n && value instanceof HTMLElement\n && value.nodeType === 1;\n};\n\n/**\n * Check if argument is a list of HTML elements.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.nodeList = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return value !== undefined\n && (type === '[object NodeList]' || type === '[object HTMLCollection]')\n && ('length' in value)\n && (value.length === 0 || exports.node(value[0]));\n};\n\n/**\n * Check if argument is a string.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.string = function(value) {\n return typeof value === 'string'\n || value instanceof String;\n};\n\n/**\n * Check if argument is a function.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.fn = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return type === '[object Function]';\n};\n\n\n/***/ }),\n\n/***/ 370:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar is = __webpack_require__(879);\nvar delegate = __webpack_require__(438);\n\n/**\n * Validates all params and calls the right\n * listener function based on its target type.\n *\n * @param {String|HTMLElement|HTMLCollection|NodeList} target\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listen(target, type, callback) {\n if (!target && !type && !callback) {\n throw new Error('Missing required arguments');\n }\n\n if (!is.string(type)) {\n throw new TypeError('Second argument must be a String');\n }\n\n if (!is.fn(callback)) {\n throw new TypeError('Third argument must be a Function');\n }\n\n if (is.node(target)) {\n return listenNode(target, type, callback);\n }\n else if (is.nodeList(target)) {\n return listenNodeList(target, type, callback);\n }\n else if (is.string(target)) {\n return listenSelector(target, type, callback);\n }\n else {\n throw new TypeError('First argument must be a String, HTMLElement, HTMLCollection, or NodeList');\n }\n}\n\n/**\n * Adds an event listener to a HTML element\n * and returns a remove listener function.\n *\n * @param {HTMLElement} node\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNode(node, type, callback) {\n node.addEventListener(type, callback);\n\n return {\n destroy: function() {\n node.removeEventListener(type, callback);\n }\n }\n}\n\n/**\n * Add an event listener to a list of HTML elements\n * and returns a remove listener function.\n *\n * @param {NodeList|HTMLCollection} nodeList\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNodeList(nodeList, type, callback) {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.addEventListener(type, callback);\n });\n\n return {\n destroy: function() {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.removeEventListener(type, callback);\n });\n }\n }\n}\n\n/**\n * Add an event listener to a selector\n * and returns a remove listener function.\n *\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenSelector(selector, type, callback) {\n return delegate(document.body, selector, type, callback);\n}\n\nmodule.exports = listen;\n\n\n/***/ }),\n\n/***/ 817:\n/***/ (function(module) {\n\nfunction select(element) {\n var selectedText;\n\n if (element.nodeName === 'SELECT') {\n element.focus();\n\n selectedText = element.value;\n }\n else if (element.nodeName === 'INPUT' || element.nodeName === 'TEXTAREA') {\n var isReadOnly = element.hasAttribute('readonly');\n\n if (!isReadOnly) {\n element.setAttribute('readonly', '');\n }\n\n element.select();\n element.setSelectionRange(0, element.value.length);\n\n if (!isReadOnly) {\n element.removeAttribute('readonly');\n }\n\n selectedText = element.value;\n }\n else {\n if (element.hasAttribute('contenteditable')) {\n element.focus();\n }\n\n var selection = window.getSelection();\n var range = document.createRange();\n\n range.selectNodeContents(element);\n selection.removeAllRanges();\n selection.addRange(range);\n\n selectedText = selection.toString();\n }\n\n return selectedText;\n}\n\nmodule.exports = select;\n\n\n/***/ }),\n\n/***/ 279:\n/***/ (function(module) {\n\nfunction E () {\n // Keep this empty so it's easier to inherit from\n // (via https://github.com/lipsmack from https://github.com/scottcorgan/tiny-emitter/issues/3)\n}\n\nE.prototype = {\n on: function (name, callback, ctx) {\n var e = this.e || (this.e = {});\n\n (e[name] || (e[name] = [])).push({\n fn: callback,\n ctx: ctx\n });\n\n return this;\n },\n\n once: function (name, callback, ctx) {\n var self = this;\n function listener () {\n self.off(name, listener);\n callback.apply(ctx, arguments);\n };\n\n listener._ = callback\n return this.on(name, listener, ctx);\n },\n\n emit: function (name) {\n var data = [].slice.call(arguments, 1);\n var evtArr = ((this.e || (this.e = {}))[name] || []).slice();\n var i = 0;\n var len = evtArr.length;\n\n for (i; i < len; i++) {\n evtArr[i].fn.apply(evtArr[i].ctx, data);\n }\n\n return this;\n },\n\n off: function (name, callback) {\n var e = this.e || (this.e = {});\n var evts = e[name];\n var liveEvents = [];\n\n if (evts && callback) {\n for (var i = 0, len = evts.length; i < len; i++) {\n if (evts[i].fn !== callback && evts[i].fn._ !== callback)\n liveEvents.push(evts[i]);\n }\n }\n\n // Remove event from queue to prevent memory leak\n // Suggested by https://github.com/lazd\n // Ref: https://github.com/scottcorgan/tiny-emitter/commit/c6ebfaa9bc973b33d110a84a307742b7cf94c953#commitcomment-5024910\n\n (liveEvents.length)\n ? e[name] = liveEvents\n : delete e[name];\n\n return this;\n }\n};\n\nmodule.exports = E;\nmodule.exports.TinyEmitter = E;\n\n\n/***/ })\n\n/******/ \t});\n/************************************************************************/\n/******/ \t// The module cache\n/******/ \tvar __webpack_module_cache__ = {};\n/******/ \t\n/******/ \t// The require function\n/******/ \tfunction __webpack_require__(moduleId) {\n/******/ \t\t// Check if module is in cache\n/******/ \t\tif(__webpack_module_cache__[moduleId]) {\n/******/ \t\t\treturn __webpack_module_cache__[moduleId].exports;\n/******/ \t\t}\n/******/ \t\t// Create a new module (and put it into the cache)\n/******/ \t\tvar module = __webpack_module_cache__[moduleId] = {\n/******/ \t\t\t// no module.id needed\n/******/ \t\t\t// no module.loaded needed\n/******/ \t\t\texports: {}\n/******/ \t\t};\n/******/ \t\n/******/ \t\t// Execute the module function\n/******/ \t\t__webpack_modules__[moduleId](module, module.exports, __webpack_require__);\n/******/ \t\n/******/ \t\t// Return the exports of the module\n/******/ \t\treturn module.exports;\n/******/ \t}\n/******/ \t\n/************************************************************************/\n/******/ \t/* webpack/runtime/compat get default export */\n/******/ \t!function() {\n/******/ \t\t// getDefaultExport function for compatibility with non-harmony modules\n/******/ \t\t__webpack_require__.n = function(module) {\n/******/ \t\t\tvar getter = module && module.__esModule ?\n/******/ \t\t\t\tfunction() { return module['default']; } :\n/******/ \t\t\t\tfunction() { return module; };\n/******/ \t\t\t__webpack_require__.d(getter, { a: getter });\n/******/ \t\t\treturn getter;\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/define property getters */\n/******/ \t!function() {\n/******/ \t\t// define getter functions for harmony exports\n/******/ \t\t__webpack_require__.d = function(exports, definition) {\n/******/ \t\t\tfor(var key in definition) {\n/******/ \t\t\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n/******/ \t\t\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n/******/ \t\t\t\t}\n/******/ \t\t\t}\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/hasOwnProperty shorthand */\n/******/ \t!function() {\n/******/ \t\t__webpack_require__.o = function(obj, prop) { return Object.prototype.hasOwnProperty.call(obj, prop); }\n/******/ \t}();\n/******/ \t\n/************************************************************************/\n/******/ \t// module exports must be returned from runtime so entry inlining is disabled\n/******/ \t// startup\n/******/ \t// Load entry module and return exports\n/******/ \treturn __webpack_require__(686);\n/******/ })()\n.default;\n});", "/*!\n * escape-html\n * Copyright(c) 2012-2013 TJ Holowaychuk\n * Copyright(c) 2015 Andreas Lubbe\n * Copyright(c) 2015 Tiancheng \"Timothy\" Gu\n * MIT Licensed\n */\n\n'use strict';\n\n/**\n * Module variables.\n * @private\n */\n\nvar matchHtmlRegExp = /[\"'&<>]/;\n\n/**\n * Module exports.\n * @public\n */\n\nmodule.exports = escapeHtml;\n\n/**\n * Escape special characters in the given string of html.\n *\n * @param {string} string The string to escape for inserting into HTML\n * @return {string}\n * @public\n */\n\nfunction escapeHtml(string) {\n var str = '' + string;\n var match = matchHtmlRegExp.exec(str);\n\n if (!match) {\n return str;\n }\n\n var escape;\n var html = '';\n var index = 0;\n var lastIndex = 0;\n\n for (index = match.index; index < str.length; index++) {\n switch (str.charCodeAt(index)) {\n case 34: // \"\n escape = '"';\n break;\n case 38: // &\n escape = '&';\n break;\n case 39: // '\n escape = ''';\n break;\n case 60: // <\n escape = '<';\n break;\n case 62: // >\n escape = '>';\n break;\n default:\n continue;\n }\n\n if (lastIndex !== index) {\n html += str.substring(lastIndex, index);\n }\n\n lastIndex = index + 1;\n html += escape;\n }\n\n return lastIndex !== index\n ? html + str.substring(lastIndex, index)\n : html;\n}\n", "/*\n * Copyright (c) 2016-2024 Martin Donath \n *\n * Permission is hereby granted, free of charge, to any person obtaining a copy\n * of this software and associated documentation files (the \"Software\"), to\n * deal in the Software without restriction, including without limitation the\n * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or\n * sell copies of the Software, and to permit persons to whom the Software is\n * furnished to do so, subject to the following conditions:\n *\n * The above copyright notice and this permission notice shall be included in\n * all copies or substantial portions of the Software.\n *\n * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE\n * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS\n * IN THE SOFTWARE.\n */\n\nimport \"focus-visible\"\n\nimport {\n EMPTY,\n NEVER,\n Observable,\n Subject,\n defer,\n delay,\n filter,\n map,\n merge,\n mergeWith,\n shareReplay,\n switchMap\n} from \"rxjs\"\n\nimport { configuration, feature } from \"./_\"\nimport {\n at,\n getActiveElement,\n getOptionalElement,\n requestJSON,\n setLocation,\n setToggle,\n watchDocument,\n watchKeyboard,\n watchLocation,\n watchLocationTarget,\n watchMedia,\n watchPrint,\n watchScript,\n watchViewport\n} from \"./browser\"\nimport {\n getComponentElement,\n getComponentElements,\n mountAnnounce,\n mountBackToTop,\n mountConsent,\n mountContent,\n mountDialog,\n mountHeader,\n mountHeaderTitle,\n mountPalette,\n mountProgress,\n mountSearch,\n mountSearchHiglight,\n mountSidebar,\n mountSource,\n mountTableOfContents,\n mountTabs,\n watchHeader,\n watchMain\n} from \"./components\"\nimport {\n SearchIndex,\n setupClipboardJS,\n setupInstantNavigation,\n setupVersionSelector\n} from \"./integrations\"\nimport {\n patchEllipsis,\n patchIndeterminate,\n patchScrollfix,\n patchScrolllock\n} from \"./patches\"\nimport \"./polyfills\"\n\n/* ----------------------------------------------------------------------------\n * Functions - @todo refactor\n * ------------------------------------------------------------------------- */\n\n/**\n * Fetch search index\n *\n * @returns Search index observable\n */\nfunction fetchSearchIndex(): Observable {\n if (location.protocol === \"file:\") {\n return watchScript(\n `${new URL(\"search/search_index.js\", config.base)}`\n )\n .pipe(\n // @ts-ignore - @todo fix typings\n map(() => __index),\n shareReplay(1)\n )\n } else {\n return requestJSON(\n new URL(\"search/search_index.json\", config.base)\n )\n }\n}\n\n/* ----------------------------------------------------------------------------\n * Application\n * ------------------------------------------------------------------------- */\n\n/* Yay, JavaScript is available */\ndocument.documentElement.classList.remove(\"no-js\")\ndocument.documentElement.classList.add(\"js\")\n\n/* Set up navigation observables and subjects */\nconst document$ = watchDocument()\nconst location$ = watchLocation()\nconst target$ = watchLocationTarget(location$)\nconst keyboard$ = watchKeyboard()\n\n/* Set up media observables */\nconst viewport$ = watchViewport()\nconst tablet$ = watchMedia(\"(min-width: 960px)\")\nconst screen$ = watchMedia(\"(min-width: 1220px)\")\nconst print$ = watchPrint()\n\n/* Retrieve search index, if search is enabled */\nconst config = configuration()\nconst index$ = document.forms.namedItem(\"search\")\n ? fetchSearchIndex()\n : NEVER\n\n/* Set up Clipboard.js integration */\nconst alert$ = new Subject()\nsetupClipboardJS({ alert$ })\n\n/* Set up progress indicator */\nconst progress$ = new Subject()\n\n/* Set up instant navigation, if enabled */\nif (feature(\"navigation.instant\"))\n setupInstantNavigation({ location$, viewport$, progress$ })\n .subscribe(document$)\n\n/* Set up version selector */\nif (config.version?.provider === \"mike\")\n setupVersionSelector({ document$ })\n\n/* Always close drawer and search on navigation */\nmerge(location$, target$)\n .pipe(\n delay(125)\n )\n .subscribe(() => {\n setToggle(\"drawer\", false)\n setToggle(\"search\", false)\n })\n\n/* Set up global keyboard handlers */\nkeyboard$\n .pipe(\n filter(({ mode }) => mode === \"global\")\n )\n .subscribe(key => {\n switch (key.type) {\n\n /* Go to previous page */\n case \"p\":\n case \",\":\n const prev = getOptionalElement(\"link[rel=prev]\")\n if (typeof prev !== \"undefined\")\n setLocation(prev)\n break\n\n /* Go to next page */\n case \"n\":\n case \".\":\n const next = getOptionalElement(\"link[rel=next]\")\n if (typeof next !== \"undefined\")\n setLocation(next)\n break\n\n /* Expand navigation, see https://bit.ly/3ZjG5io */\n case \"Enter\":\n const active = getActiveElement()\n if (active instanceof HTMLLabelElement)\n active.click()\n }\n })\n\n/* Set up patches */\npatchEllipsis({ document$ })\npatchIndeterminate({ document$, tablet$ })\npatchScrollfix({ document$ })\npatchScrolllock({ viewport$, tablet$ })\n\n/* Set up header and main area observable */\nconst header$ = watchHeader(getComponentElement(\"header\"), { viewport$ })\nconst main$ = document$\n .pipe(\n map(() => getComponentElement(\"main\")),\n switchMap(el => watchMain(el, { viewport$, header$ })),\n shareReplay(1)\n )\n\n/* Set up control component observables */\nconst control$ = merge(\n\n /* Consent */\n ...getComponentElements(\"consent\")\n .map(el => mountConsent(el, { target$ })),\n\n /* Dialog */\n ...getComponentElements(\"dialog\")\n .map(el => mountDialog(el, { alert$ })),\n\n /* Header */\n ...getComponentElements(\"header\")\n .map(el => mountHeader(el, { viewport$, header$, main$ })),\n\n /* Color palette */\n ...getComponentElements(\"palette\")\n .map(el => mountPalette(el)),\n\n /* Progress bar */\n ...getComponentElements(\"progress\")\n .map(el => mountProgress(el, { progress$ })),\n\n /* Search */\n ...getComponentElements(\"search\")\n .map(el => mountSearch(el, { index$, keyboard$ })),\n\n /* Repository information */\n ...getComponentElements(\"source\")\n .map(el => mountSource(el))\n)\n\n/* Set up content component observables */\nconst content$ = defer(() => merge(\n\n /* Announcement bar */\n ...getComponentElements(\"announce\")\n .map(el => mountAnnounce(el)),\n\n /* Content */\n ...getComponentElements(\"content\")\n .map(el => mountContent(el, { viewport$, target$, print$ })),\n\n /* Search highlighting */\n ...getComponentElements(\"content\")\n .map(el => feature(\"search.highlight\")\n ? mountSearchHiglight(el, { index$, location$ })\n : EMPTY\n ),\n\n /* Header title */\n ...getComponentElements(\"header-title\")\n .map(el => mountHeaderTitle(el, { viewport$, header$ })),\n\n /* Sidebar */\n ...getComponentElements(\"sidebar\")\n .map(el => el.getAttribute(\"data-md-type\") === \"navigation\"\n ? at(screen$, () => mountSidebar(el, { viewport$, header$, main$ }))\n : at(tablet$, () => mountSidebar(el, { viewport$, header$, main$ }))\n ),\n\n /* Navigation tabs */\n ...getComponentElements(\"tabs\")\n .map(el => mountTabs(el, { viewport$, header$ })),\n\n /* Table of contents */\n ...getComponentElements(\"toc\")\n .map(el => mountTableOfContents(el, {\n viewport$, header$, main$, target$\n })),\n\n /* Back-to-top button */\n ...getComponentElements(\"top\")\n .map(el => mountBackToTop(el, { viewport$, header$, main$, target$ }))\n))\n\n/* Set up component observables */\nconst component$ = document$\n .pipe(\n switchMap(() => content$),\n mergeWith(control$),\n shareReplay(1)\n )\n\n/* Subscribe to all components */\ncomponent$.subscribe()\n\n/* ----------------------------------------------------------------------------\n * Exports\n * ------------------------------------------------------------------------- */\n\nwindow.document$ = document$ /* Document observable */\nwindow.location$ = location$ /* Location subject */\nwindow.target$ = target$ /* Location target observable */\nwindow.keyboard$ = keyboard$ /* Keyboard observable */\nwindow.viewport$ = viewport$ /* Viewport observable */\nwindow.tablet$ = tablet$ /* Media tablet observable */\nwindow.screen$ = screen$ /* Media screen observable */\nwindow.print$ = print$ /* Media print observable */\nwindow.alert$ = alert$ /* Alert subject */\nwindow.progress$ = progress$ /* Progress indicator subject */\nwindow.component$ = component$ /* Component observable */\n", "/*! *****************************************************************************\r\nCopyright (c) Microsoft Corporation.\r\n\r\nPermission to use, copy, modify, and/or distribute this software for any\r\npurpose with or without fee is hereby granted.\r\n\r\nTHE SOFTWARE IS PROVIDED \"AS IS\" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH\r\nREGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY\r\nAND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,\r\nINDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM\r\nLOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR\r\nOTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR\r\nPERFORMANCE OF THIS SOFTWARE.\r\n***************************************************************************** */\r\n/* global Reflect, Promise */\r\n\r\nvar extendStatics = function(d, b) {\r\n extendStatics = Object.setPrototypeOf ||\r\n ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||\r\n function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };\r\n return extendStatics(d, b);\r\n};\r\n\r\nexport function __extends(d, b) {\r\n if (typeof b !== \"function\" && b !== null)\r\n throw new TypeError(\"Class extends value \" + String(b) + \" is not a constructor or null\");\r\n extendStatics(d, b);\r\n function __() { this.constructor = d; }\r\n d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());\r\n}\r\n\r\nexport var __assign = function() {\r\n __assign = Object.assign || function __assign(t) {\r\n for (var s, i = 1, n = arguments.length; i < n; i++) {\r\n s = arguments[i];\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];\r\n }\r\n return t;\r\n }\r\n return __assign.apply(this, arguments);\r\n}\r\n\r\nexport function __rest(s, e) {\r\n var t = {};\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p) && e.indexOf(p) < 0)\r\n t[p] = s[p];\r\n if (s != null && typeof Object.getOwnPropertySymbols === \"function\")\r\n for (var i = 0, p = Object.getOwnPropertySymbols(s); i < p.length; i++) {\r\n if (e.indexOf(p[i]) < 0 && Object.prototype.propertyIsEnumerable.call(s, p[i]))\r\n t[p[i]] = s[p[i]];\r\n }\r\n return t;\r\n}\r\n\r\nexport function __decorate(decorators, target, key, desc) {\r\n var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d;\r\n if (typeof Reflect === \"object\" && typeof Reflect.decorate === \"function\") r = Reflect.decorate(decorators, target, key, desc);\r\n else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r;\r\n return c > 3 && r && Object.defineProperty(target, key, r), r;\r\n}\r\n\r\nexport function __param(paramIndex, decorator) {\r\n return function (target, key) { decorator(target, key, paramIndex); }\r\n}\r\n\r\nexport function __metadata(metadataKey, metadataValue) {\r\n if (typeof Reflect === \"object\" && typeof Reflect.metadata === \"function\") return Reflect.metadata(metadataKey, metadataValue);\r\n}\r\n\r\nexport function __awaiter(thisArg, _arguments, P, generator) {\r\n function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }\r\n return new (P || (P = Promise))(function (resolve, reject) {\r\n function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }\r\n function rejected(value) { try { step(generator[\"throw\"](value)); } catch (e) { reject(e); } }\r\n function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }\r\n step((generator = generator.apply(thisArg, _arguments || [])).next());\r\n });\r\n}\r\n\r\nexport function __generator(thisArg, body) {\r\n var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;\r\n return g = { next: verb(0), \"throw\": verb(1), \"return\": verb(2) }, typeof Symbol === \"function\" && (g[Symbol.iterator] = function() { return this; }), g;\r\n function verb(n) { return function (v) { return step([n, v]); }; }\r\n function step(op) {\r\n if (f) throw new TypeError(\"Generator is already executing.\");\r\n while (_) try {\r\n if (f = 1, y && (t = op[0] & 2 ? y[\"return\"] : op[0] ? y[\"throw\"] || ((t = y[\"return\"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;\r\n if (y = 0, t) op = [op[0] & 2, t.value];\r\n switch (op[0]) {\r\n case 0: case 1: t = op; break;\r\n case 4: _.label++; return { value: op[1], done: false };\r\n case 5: _.label++; y = op[1]; op = [0]; continue;\r\n case 7: op = _.ops.pop(); _.trys.pop(); continue;\r\n default:\r\n if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }\r\n if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }\r\n if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }\r\n if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }\r\n if (t[2]) _.ops.pop();\r\n _.trys.pop(); continue;\r\n }\r\n op = body.call(thisArg, _);\r\n } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }\r\n if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };\r\n }\r\n}\r\n\r\nexport var __createBinding = Object.create ? (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });\r\n}) : (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n o[k2] = m[k];\r\n});\r\n\r\nexport function __exportStar(m, o) {\r\n for (var p in m) if (p !== \"default\" && !Object.prototype.hasOwnProperty.call(o, p)) __createBinding(o, m, p);\r\n}\r\n\r\nexport function __values(o) {\r\n var s = typeof Symbol === \"function\" && Symbol.iterator, m = s && o[s], i = 0;\r\n if (m) return m.call(o);\r\n if (o && typeof o.length === \"number\") return {\r\n next: function () {\r\n if (o && i >= o.length) o = void 0;\r\n return { value: o && o[i++], done: !o };\r\n }\r\n };\r\n throw new TypeError(s ? \"Object is not iterable.\" : \"Symbol.iterator is not defined.\");\r\n}\r\n\r\nexport function __read(o, n) {\r\n var m = typeof Symbol === \"function\" && o[Symbol.iterator];\r\n if (!m) return o;\r\n var i = m.call(o), r, ar = [], e;\r\n try {\r\n while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);\r\n }\r\n catch (error) { e = { error: error }; }\r\n finally {\r\n try {\r\n if (r && !r.done && (m = i[\"return\"])) m.call(i);\r\n }\r\n finally { if (e) throw e.error; }\r\n }\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spread() {\r\n for (var ar = [], i = 0; i < arguments.length; i++)\r\n ar = ar.concat(__read(arguments[i]));\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spreadArrays() {\r\n for (var s = 0, i = 0, il = arguments.length; i < il; i++) s += arguments[i].length;\r\n for (var r = Array(s), k = 0, i = 0; i < il; i++)\r\n for (var a = arguments[i], j = 0, jl = a.length; j < jl; j++, k++)\r\n r[k] = a[j];\r\n return r;\r\n}\r\n\r\nexport function __spreadArray(to, from, pack) {\r\n if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {\r\n if (ar || !(i in from)) {\r\n if (!ar) ar = Array.prototype.slice.call(from, 0, i);\r\n ar[i] = from[i];\r\n }\r\n }\r\n return to.concat(ar || Array.prototype.slice.call(from));\r\n}\r\n\r\nexport function __await(v) {\r\n return this instanceof __await ? (this.v = v, this) : new __await(v);\r\n}\r\n\r\nexport function __asyncGenerator(thisArg, _arguments, generator) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var g = generator.apply(thisArg, _arguments || []), i, q = [];\r\n return i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i;\r\n function verb(n) { if (g[n]) i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; }\r\n function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } }\r\n function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); }\r\n function fulfill(value) { resume(\"next\", value); }\r\n function reject(value) { resume(\"throw\", value); }\r\n function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); }\r\n}\r\n\r\nexport function __asyncDelegator(o) {\r\n var i, p;\r\n return i = {}, verb(\"next\"), verb(\"throw\", function (e) { throw e; }), verb(\"return\"), i[Symbol.iterator] = function () { return this; }, i;\r\n function verb(n, f) { i[n] = o[n] ? function (v) { return (p = !p) ? { value: __await(o[n](v)), done: n === \"return\" } : f ? f(v) : v; } : f; }\r\n}\r\n\r\nexport function __asyncValues(o) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var m = o[Symbol.asyncIterator], i;\r\n return m ? m.call(o) : (o = typeof __values === \"function\" ? __values(o) : o[Symbol.iterator](), i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i);\r\n function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; }\r\n function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); }\r\n}\r\n\r\nexport function __makeTemplateObject(cooked, raw) {\r\n if (Object.defineProperty) { Object.defineProperty(cooked, \"raw\", { value: raw }); } else { cooked.raw = raw; }\r\n return cooked;\r\n};\r\n\r\nvar __setModuleDefault = Object.create ? (function(o, v) {\r\n Object.defineProperty(o, \"default\", { enumerable: true, value: v });\r\n}) : function(o, v) {\r\n o[\"default\"] = v;\r\n};\r\n\r\nexport function __importStar(mod) {\r\n if (mod && mod.__esModule) return mod;\r\n var result = {};\r\n if (mod != null) for (var k in mod) if (k !== \"default\" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);\r\n __setModuleDefault(result, mod);\r\n return result;\r\n}\r\n\r\nexport function __importDefault(mod) {\r\n return (mod && mod.__esModule) ? mod : { default: mod };\r\n}\r\n\r\nexport function __classPrivateFieldGet(receiver, state, kind, f) {\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a getter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot read private member from an object whose class did not declare it\");\r\n return kind === \"m\" ? f : kind === \"a\" ? f.call(receiver) : f ? f.value : state.get(receiver);\r\n}\r\n\r\nexport function __classPrivateFieldSet(receiver, state, value, kind, f) {\r\n if (kind === \"m\") throw new TypeError(\"Private method is not writable\");\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a setter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot write private member to an object whose class did not declare it\");\r\n return (kind === \"a\" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;\r\n}\r\n", "/**\n * Returns true if the object is a function.\n * @param value The value to check\n */\nexport function isFunction(value: any): value is (...args: any[]) => any {\n return typeof value === 'function';\n}\n", "/**\n * Used to create Error subclasses until the community moves away from ES5.\n *\n * This is because compiling from TypeScript down to ES5 has issues with subclassing Errors\n * as well as other built-in types: https://github.com/Microsoft/TypeScript/issues/12123\n *\n * @param createImpl A factory function to create the actual constructor implementation. The returned\n * function should be a named function that calls `_super` internally.\n */\nexport function createErrorClass(createImpl: (_super: any) => any): T {\n const _super = (instance: any) => {\n Error.call(instance);\n instance.stack = new Error().stack;\n };\n\n const ctorFunc = createImpl(_super);\n ctorFunc.prototype = Object.create(Error.prototype);\n ctorFunc.prototype.constructor = ctorFunc;\n return ctorFunc;\n}\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface UnsubscriptionError extends Error {\n readonly errors: any[];\n}\n\nexport interface UnsubscriptionErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (errors: any[]): UnsubscriptionError;\n}\n\n/**\n * An error thrown when one or more errors have occurred during the\n * `unsubscribe` of a {@link Subscription}.\n */\nexport const UnsubscriptionError: UnsubscriptionErrorCtor = createErrorClass(\n (_super) =>\n function UnsubscriptionErrorImpl(this: any, errors: (Error | string)[]) {\n _super(this);\n this.message = errors\n ? `${errors.length} errors occurred during unsubscription:\n${errors.map((err, i) => `${i + 1}) ${err.toString()}`).join('\\n ')}`\n : '';\n this.name = 'UnsubscriptionError';\n this.errors = errors;\n }\n);\n", "/**\n * Removes an item from an array, mutating it.\n * @param arr The array to remove the item from\n * @param item The item to remove\n */\nexport function arrRemove(arr: T[] | undefined | null, item: T) {\n if (arr) {\n const index = arr.indexOf(item);\n 0 <= index && arr.splice(index, 1);\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { UnsubscriptionError } from './util/UnsubscriptionError';\nimport { SubscriptionLike, TeardownLogic, Unsubscribable } from './types';\nimport { arrRemove } from './util/arrRemove';\n\n/**\n * Represents a disposable resource, such as the execution of an Observable. A\n * Subscription has one important method, `unsubscribe`, that takes no argument\n * and just disposes the resource held by the subscription.\n *\n * Additionally, subscriptions may be grouped together through the `add()`\n * method, which will attach a child Subscription to the current Subscription.\n * When a Subscription is unsubscribed, all its children (and its grandchildren)\n * will be unsubscribed as well.\n *\n * @class Subscription\n */\nexport class Subscription implements SubscriptionLike {\n /** @nocollapse */\n public static EMPTY = (() => {\n const empty = new Subscription();\n empty.closed = true;\n return empty;\n })();\n\n /**\n * A flag to indicate whether this Subscription has already been unsubscribed.\n */\n public closed = false;\n\n private _parentage: Subscription[] | Subscription | null = null;\n\n /**\n * The list of registered finalizers to execute upon unsubscription. Adding and removing from this\n * list occurs in the {@link #add} and {@link #remove} methods.\n */\n private _finalizers: Exclude[] | null = null;\n\n /**\n * @param initialTeardown A function executed first as part of the finalization\n * process that is kicked off when {@link #unsubscribe} is called.\n */\n constructor(private initialTeardown?: () => void) {}\n\n /**\n * Disposes the resources held by the subscription. May, for instance, cancel\n * an ongoing Observable execution or cancel any other type of work that\n * started when the Subscription was created.\n * @return {void}\n */\n unsubscribe(): void {\n let errors: any[] | undefined;\n\n if (!this.closed) {\n this.closed = true;\n\n // Remove this from it's parents.\n const { _parentage } = this;\n if (_parentage) {\n this._parentage = null;\n if (Array.isArray(_parentage)) {\n for (const parent of _parentage) {\n parent.remove(this);\n }\n } else {\n _parentage.remove(this);\n }\n }\n\n const { initialTeardown: initialFinalizer } = this;\n if (isFunction(initialFinalizer)) {\n try {\n initialFinalizer();\n } catch (e) {\n errors = e instanceof UnsubscriptionError ? e.errors : [e];\n }\n }\n\n const { _finalizers } = this;\n if (_finalizers) {\n this._finalizers = null;\n for (const finalizer of _finalizers) {\n try {\n execFinalizer(finalizer);\n } catch (err) {\n errors = errors ?? [];\n if (err instanceof UnsubscriptionError) {\n errors = [...errors, ...err.errors];\n } else {\n errors.push(err);\n }\n }\n }\n }\n\n if (errors) {\n throw new UnsubscriptionError(errors);\n }\n }\n }\n\n /**\n * Adds a finalizer to this subscription, so that finalization will be unsubscribed/called\n * when this subscription is unsubscribed. If this subscription is already {@link #closed},\n * because it has already been unsubscribed, then whatever finalizer is passed to it\n * will automatically be executed (unless the finalizer itself is also a closed subscription).\n *\n * Closed Subscriptions cannot be added as finalizers to any subscription. Adding a closed\n * subscription to a any subscription will result in no operation. (A noop).\n *\n * Adding a subscription to itself, or adding `null` or `undefined` will not perform any\n * operation at all. (A noop).\n *\n * `Subscription` instances that are added to this instance will automatically remove themselves\n * if they are unsubscribed. Functions and {@link Unsubscribable} objects that you wish to remove\n * will need to be removed manually with {@link #remove}\n *\n * @param teardown The finalization logic to add to this subscription.\n */\n add(teardown: TeardownLogic): void {\n // Only add the finalizer if it's not undefined\n // and don't add a subscription to itself.\n if (teardown && teardown !== this) {\n if (this.closed) {\n // If this subscription is already closed,\n // execute whatever finalizer is handed to it automatically.\n execFinalizer(teardown);\n } else {\n if (teardown instanceof Subscription) {\n // We don't add closed subscriptions, and we don't add the same subscription\n // twice. Subscription unsubscribe is idempotent.\n if (teardown.closed || teardown._hasParent(this)) {\n return;\n }\n teardown._addParent(this);\n }\n (this._finalizers = this._finalizers ?? []).push(teardown);\n }\n }\n }\n\n /**\n * Checks to see if a this subscription already has a particular parent.\n * This will signal that this subscription has already been added to the parent in question.\n * @param parent the parent to check for\n */\n private _hasParent(parent: Subscription) {\n const { _parentage } = this;\n return _parentage === parent || (Array.isArray(_parentage) && _parentage.includes(parent));\n }\n\n /**\n * Adds a parent to this subscription so it can be removed from the parent if it\n * unsubscribes on it's own.\n *\n * NOTE: THIS ASSUMES THAT {@link _hasParent} HAS ALREADY BEEN CHECKED.\n * @param parent The parent subscription to add\n */\n private _addParent(parent: Subscription) {\n const { _parentage } = this;\n this._parentage = Array.isArray(_parentage) ? (_parentage.push(parent), _parentage) : _parentage ? [_parentage, parent] : parent;\n }\n\n /**\n * Called on a child when it is removed via {@link #remove}.\n * @param parent The parent to remove\n */\n private _removeParent(parent: Subscription) {\n const { _parentage } = this;\n if (_parentage === parent) {\n this._parentage = null;\n } else if (Array.isArray(_parentage)) {\n arrRemove(_parentage, parent);\n }\n }\n\n /**\n * Removes a finalizer from this subscription that was previously added with the {@link #add} method.\n *\n * Note that `Subscription` instances, when unsubscribed, will automatically remove themselves\n * from every other `Subscription` they have been added to. This means that using the `remove` method\n * is not a common thing and should be used thoughtfully.\n *\n * If you add the same finalizer instance of a function or an unsubscribable object to a `Subscription` instance\n * more than once, you will need to call `remove` the same number of times to remove all instances.\n *\n * All finalizer instances are removed to free up memory upon unsubscription.\n *\n * @param teardown The finalizer to remove from this subscription\n */\n remove(teardown: Exclude): void {\n const { _finalizers } = this;\n _finalizers && arrRemove(_finalizers, teardown);\n\n if (teardown instanceof Subscription) {\n teardown._removeParent(this);\n }\n }\n}\n\nexport const EMPTY_SUBSCRIPTION = Subscription.EMPTY;\n\nexport function isSubscription(value: any): value is Subscription {\n return (\n value instanceof Subscription ||\n (value && 'closed' in value && isFunction(value.remove) && isFunction(value.add) && isFunction(value.unsubscribe))\n );\n}\n\nfunction execFinalizer(finalizer: Unsubscribable | (() => void)) {\n if (isFunction(finalizer)) {\n finalizer();\n } else {\n finalizer.unsubscribe();\n }\n}\n", "import { Subscriber } from './Subscriber';\nimport { ObservableNotification } from './types';\n\n/**\n * The {@link GlobalConfig} object for RxJS. It is used to configure things\n * like how to react on unhandled errors.\n */\nexport const config: GlobalConfig = {\n onUnhandledError: null,\n onStoppedNotification: null,\n Promise: undefined,\n useDeprecatedSynchronousErrorHandling: false,\n useDeprecatedNextContext: false,\n};\n\n/**\n * The global configuration object for RxJS, used to configure things\n * like how to react on unhandled errors. Accessible via {@link config}\n * object.\n */\nexport interface GlobalConfig {\n /**\n * A registration point for unhandled errors from RxJS. These are errors that\n * cannot were not handled by consuming code in the usual subscription path. For\n * example, if you have this configured, and you subscribe to an observable without\n * providing an error handler, errors from that subscription will end up here. This\n * will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onUnhandledError: ((err: any) => void) | null;\n\n /**\n * A registration point for notifications that cannot be sent to subscribers because they\n * have completed, errored or have been explicitly unsubscribed. By default, next, complete\n * and error notifications sent to stopped subscribers are noops. However, sometimes callers\n * might want a different behavior. For example, with sources that attempt to report errors\n * to stopped subscribers, a caller can configure RxJS to throw an unhandled error instead.\n * This will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onStoppedNotification: ((notification: ObservableNotification, subscriber: Subscriber) => void) | null;\n\n /**\n * The promise constructor used by default for {@link Observable#toPromise toPromise} and {@link Observable#forEach forEach}\n * methods.\n *\n * @deprecated As of version 8, RxJS will no longer support this sort of injection of a\n * Promise constructor. If you need a Promise implementation other than native promises,\n * please polyfill/patch Promise as you see appropriate. Will be removed in v8.\n */\n Promise?: PromiseConstructorLike;\n\n /**\n * If true, turns on synchronous error rethrowing, which is a deprecated behavior\n * in v6 and higher. This behavior enables bad patterns like wrapping a subscribe\n * call in a try/catch block. It also enables producer interference, a nasty bug\n * where a multicast can be broken for all observers by a downstream consumer with\n * an unhandled error. DO NOT USE THIS FLAG UNLESS IT'S NEEDED TO BUY TIME\n * FOR MIGRATION REASONS.\n *\n * @deprecated As of version 8, RxJS will no longer support synchronous throwing\n * of unhandled errors. All errors will be thrown on a separate call stack to prevent bad\n * behaviors described above. Will be removed in v8.\n */\n useDeprecatedSynchronousErrorHandling: boolean;\n\n /**\n * If true, enables an as-of-yet undocumented feature from v5: The ability to access\n * `unsubscribe()` via `this` context in `next` functions created in observers passed\n * to `subscribe`.\n *\n * This is being removed because the performance was severely problematic, and it could also cause\n * issues when types other than POJOs are passed to subscribe as subscribers, as they will likely have\n * their `this` context overwritten.\n *\n * @deprecated As of version 8, RxJS will no longer support altering the\n * context of next functions provided as part of an observer to Subscribe. Instead,\n * you will have access to a subscription or a signal or token that will allow you to do things like\n * unsubscribe and test closed status. Will be removed in v8.\n */\n useDeprecatedNextContext: boolean;\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetTimeoutFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearTimeoutFunction = (handle: TimerHandle) => void;\n\ninterface TimeoutProvider {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n delegate:\n | {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n }\n | undefined;\n}\n\nexport const timeoutProvider: TimeoutProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setTimeout(handler: () => void, timeout?: number, ...args) {\n const { delegate } = timeoutProvider;\n if (delegate?.setTimeout) {\n return delegate.setTimeout(handler, timeout, ...args);\n }\n return setTimeout(handler, timeout, ...args);\n },\n clearTimeout(handle) {\n const { delegate } = timeoutProvider;\n return (delegate?.clearTimeout || clearTimeout)(handle as any);\n },\n delegate: undefined,\n};\n", "import { config } from '../config';\nimport { timeoutProvider } from '../scheduler/timeoutProvider';\n\n/**\n * Handles an error on another job either with the user-configured {@link onUnhandledError},\n * or by throwing it on that new job so it can be picked up by `window.onerror`, `process.on('error')`, etc.\n *\n * This should be called whenever there is an error that is out-of-band with the subscription\n * or when an error hits a terminal boundary of the subscription and no error handler was provided.\n *\n * @param err the error to report\n */\nexport function reportUnhandledError(err: any) {\n timeoutProvider.setTimeout(() => {\n const { onUnhandledError } = config;\n if (onUnhandledError) {\n // Execute the user-configured error handler.\n onUnhandledError(err);\n } else {\n // Throw so it is picked up by the runtime's uncaught error mechanism.\n throw err;\n }\n });\n}\n", "/* tslint:disable:no-empty */\nexport function noop() { }\n", "import { CompleteNotification, NextNotification, ErrorNotification } from './types';\n\n/**\n * A completion object optimized for memory use and created to be the\n * same \"shape\" as other notifications in v8.\n * @internal\n */\nexport const COMPLETE_NOTIFICATION = (() => createNotification('C', undefined, undefined) as CompleteNotification)();\n\n/**\n * Internal use only. Creates an optimized error notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function errorNotification(error: any): ErrorNotification {\n return createNotification('E', undefined, error) as any;\n}\n\n/**\n * Internal use only. Creates an optimized next notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function nextNotification(value: T) {\n return createNotification('N', value, undefined) as NextNotification;\n}\n\n/**\n * Ensures that all notifications created internally have the same \"shape\" in v8.\n *\n * TODO: This is only exported to support a crazy legacy test in `groupBy`.\n * @internal\n */\nexport function createNotification(kind: 'N' | 'E' | 'C', value: any, error: any) {\n return {\n kind,\n value,\n error,\n };\n}\n", "import { config } from '../config';\n\nlet context: { errorThrown: boolean; error: any } | null = null;\n\n/**\n * Handles dealing with errors for super-gross mode. Creates a context, in which\n * any synchronously thrown errors will be passed to {@link captureError}. Which\n * will record the error such that it will be rethrown after the call back is complete.\n * TODO: Remove in v8\n * @param cb An immediately executed function.\n */\nexport function errorContext(cb: () => void) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n const isRoot = !context;\n if (isRoot) {\n context = { errorThrown: false, error: null };\n }\n cb();\n if (isRoot) {\n const { errorThrown, error } = context!;\n context = null;\n if (errorThrown) {\n throw error;\n }\n }\n } else {\n // This is the general non-deprecated path for everyone that\n // isn't crazy enough to use super-gross mode (useDeprecatedSynchronousErrorHandling)\n cb();\n }\n}\n\n/**\n * Captures errors only in super-gross mode.\n * @param err the error to capture\n */\nexport function captureError(err: any) {\n if (config.useDeprecatedSynchronousErrorHandling && context) {\n context.errorThrown = true;\n context.error = err;\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { Observer, ObservableNotification } from './types';\nimport { isSubscription, Subscription } from './Subscription';\nimport { config } from './config';\nimport { reportUnhandledError } from './util/reportUnhandledError';\nimport { noop } from './util/noop';\nimport { nextNotification, errorNotification, COMPLETE_NOTIFICATION } from './NotificationFactories';\nimport { timeoutProvider } from './scheduler/timeoutProvider';\nimport { captureError } from './util/errorContext';\n\n/**\n * Implements the {@link Observer} interface and extends the\n * {@link Subscription} class. While the {@link Observer} is the public API for\n * consuming the values of an {@link Observable}, all Observers get converted to\n * a Subscriber, in order to provide Subscription-like capabilities such as\n * `unsubscribe`. Subscriber is a common type in RxJS, and crucial for\n * implementing operators, but it is rarely used as a public API.\n *\n * @class Subscriber\n */\nexport class Subscriber extends Subscription implements Observer {\n /**\n * A static factory for a Subscriber, given a (potentially partial) definition\n * of an Observer.\n * @param next The `next` callback of an Observer.\n * @param error The `error` callback of an\n * Observer.\n * @param complete The `complete` callback of an\n * Observer.\n * @return A Subscriber wrapping the (partially defined)\n * Observer represented by the given arguments.\n * @nocollapse\n * @deprecated Do not use. Will be removed in v8. There is no replacement for this\n * method, and there is no reason to be creating instances of `Subscriber` directly.\n * If you have a specific use case, please file an issue.\n */\n static create(next?: (x?: T) => void, error?: (e?: any) => void, complete?: () => void): Subscriber {\n return new SafeSubscriber(next, error, complete);\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected isStopped: boolean = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected destination: Subscriber | Observer; // this `any` is the escape hatch to erase extra type param (e.g. R)\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * There is no reason to directly create an instance of Subscriber. This type is exported for typings reasons.\n */\n constructor(destination?: Subscriber | Observer) {\n super();\n if (destination) {\n this.destination = destination;\n // Automatically chain subscriptions together here.\n // if destination is a Subscription, then it is a Subscriber.\n if (isSubscription(destination)) {\n destination.add(this);\n }\n } else {\n this.destination = EMPTY_OBSERVER;\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `next` from\n * the Observable, with a value. The Observable may call this method 0 or more\n * times.\n * @param {T} [value] The `next` value.\n * @return {void}\n */\n next(value?: T): void {\n if (this.isStopped) {\n handleStoppedNotification(nextNotification(value), this);\n } else {\n this._next(value!);\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `error` from\n * the Observable, with an attached `Error`. Notifies the Observer that\n * the Observable has experienced an error condition.\n * @param {any} [err] The `error` exception.\n * @return {void}\n */\n error(err?: any): void {\n if (this.isStopped) {\n handleStoppedNotification(errorNotification(err), this);\n } else {\n this.isStopped = true;\n this._error(err);\n }\n }\n\n /**\n * The {@link Observer} callback to receive a valueless notification of type\n * `complete` from the Observable. Notifies the Observer that the Observable\n * has finished sending push-based notifications.\n * @return {void}\n */\n complete(): void {\n if (this.isStopped) {\n handleStoppedNotification(COMPLETE_NOTIFICATION, this);\n } else {\n this.isStopped = true;\n this._complete();\n }\n }\n\n unsubscribe(): void {\n if (!this.closed) {\n this.isStopped = true;\n super.unsubscribe();\n this.destination = null!;\n }\n }\n\n protected _next(value: T): void {\n this.destination.next(value);\n }\n\n protected _error(err: any): void {\n try {\n this.destination.error(err);\n } finally {\n this.unsubscribe();\n }\n }\n\n protected _complete(): void {\n try {\n this.destination.complete();\n } finally {\n this.unsubscribe();\n }\n }\n}\n\n/**\n * This bind is captured here because we want to be able to have\n * compatibility with monoid libraries that tend to use a method named\n * `bind`. In particular, a library called Monio requires this.\n */\nconst _bind = Function.prototype.bind;\n\nfunction bind any>(fn: Fn, thisArg: any): Fn {\n return _bind.call(fn, thisArg);\n}\n\n/**\n * Internal optimization only, DO NOT EXPOSE.\n * @internal\n */\nclass ConsumerObserver implements Observer {\n constructor(private partialObserver: Partial>) {}\n\n next(value: T): void {\n const { partialObserver } = this;\n if (partialObserver.next) {\n try {\n partialObserver.next(value);\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n\n error(err: any): void {\n const { partialObserver } = this;\n if (partialObserver.error) {\n try {\n partialObserver.error(err);\n } catch (error) {\n handleUnhandledError(error);\n }\n } else {\n handleUnhandledError(err);\n }\n }\n\n complete(): void {\n const { partialObserver } = this;\n if (partialObserver.complete) {\n try {\n partialObserver.complete();\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n}\n\nexport class SafeSubscriber extends Subscriber {\n constructor(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((e?: any) => void) | null,\n complete?: (() => void) | null\n ) {\n super();\n\n let partialObserver: Partial>;\n if (isFunction(observerOrNext) || !observerOrNext) {\n // The first argument is a function, not an observer. The next\n // two arguments *could* be observers, or they could be empty.\n partialObserver = {\n next: (observerOrNext ?? undefined) as (((value: T) => void) | undefined),\n error: error ?? undefined,\n complete: complete ?? undefined,\n };\n } else {\n // The first argument is a partial observer.\n let context: any;\n if (this && config.useDeprecatedNextContext) {\n // This is a deprecated path that made `this.unsubscribe()` available in\n // next handler functions passed to subscribe. This only exists behind a flag\n // now, as it is *very* slow.\n context = Object.create(observerOrNext);\n context.unsubscribe = () => this.unsubscribe();\n partialObserver = {\n next: observerOrNext.next && bind(observerOrNext.next, context),\n error: observerOrNext.error && bind(observerOrNext.error, context),\n complete: observerOrNext.complete && bind(observerOrNext.complete, context),\n };\n } else {\n // The \"normal\" path. Just use the partial observer directly.\n partialObserver = observerOrNext;\n }\n }\n\n // Wrap the partial observer to ensure it's a full observer, and\n // make sure proper error handling is accounted for.\n this.destination = new ConsumerObserver(partialObserver);\n }\n}\n\nfunction handleUnhandledError(error: any) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n captureError(error);\n } else {\n // Ideal path, we report this as an unhandled error,\n // which is thrown on a new call stack.\n reportUnhandledError(error);\n }\n}\n\n/**\n * An error handler used when no error handler was supplied\n * to the SafeSubscriber -- meaning no error handler was supplied\n * do the `subscribe` call on our observable.\n * @param err The error to handle\n */\nfunction defaultErrorHandler(err: any) {\n throw err;\n}\n\n/**\n * A handler for notifications that cannot be sent to a stopped subscriber.\n * @param notification The notification being sent\n * @param subscriber The stopped subscriber\n */\nfunction handleStoppedNotification(notification: ObservableNotification, subscriber: Subscriber) {\n const { onStoppedNotification } = config;\n onStoppedNotification && timeoutProvider.setTimeout(() => onStoppedNotification(notification, subscriber));\n}\n\n/**\n * The observer used as a stub for subscriptions where the user did not\n * pass any arguments to `subscribe`. Comes with the default error handling\n * behavior.\n */\nexport const EMPTY_OBSERVER: Readonly> & { closed: true } = {\n closed: true,\n next: noop,\n error: defaultErrorHandler,\n complete: noop,\n};\n", "/**\n * Symbol.observable or a string \"@@observable\". Used for interop\n *\n * @deprecated We will no longer be exporting this symbol in upcoming versions of RxJS.\n * Instead polyfill and use Symbol.observable directly *or* use https://www.npmjs.com/package/symbol-observable\n */\nexport const observable: string | symbol = (() => (typeof Symbol === 'function' && Symbol.observable) || '@@observable')();\n", "/**\n * This function takes one parameter and just returns it. Simply put,\n * this is like `(x: T): T => x`.\n *\n * ## Examples\n *\n * This is useful in some cases when using things like `mergeMap`\n *\n * ```ts\n * import { interval, take, map, range, mergeMap, identity } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(5));\n *\n * const result$ = source$.pipe(\n * map(i => range(i)),\n * mergeMap(identity) // same as mergeMap(x => x)\n * );\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * Or when you want to selectively apply an operator\n *\n * ```ts\n * import { interval, take, identity } from 'rxjs';\n *\n * const shouldLimit = () => Math.random() < 0.5;\n *\n * const source$ = interval(1000);\n *\n * const result$ = source$.pipe(shouldLimit() ? take(5) : identity);\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * @param x Any value that is returned by this function\n * @returns The value passed as the first parameter to this function\n */\nexport function identity(x: T): T {\n return x;\n}\n", "import { identity } from './identity';\nimport { UnaryFunction } from '../types';\n\nexport function pipe(): typeof identity;\nexport function pipe(fn1: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction, fn3: UnaryFunction): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction,\n ...fns: UnaryFunction[]\n): UnaryFunction;\n\n/**\n * pipe() can be called on one or more functions, each of which can take one argument (\"UnaryFunction\")\n * and uses it to return a value.\n * It returns a function that takes one argument, passes it to the first UnaryFunction, and then\n * passes the result to the next one, passes that result to the next one, and so on. \n */\nexport function pipe(...fns: Array>): UnaryFunction {\n return pipeFromArray(fns);\n}\n\n/** @internal */\nexport function pipeFromArray(fns: Array>): UnaryFunction {\n if (fns.length === 0) {\n return identity as UnaryFunction;\n }\n\n if (fns.length === 1) {\n return fns[0];\n }\n\n return function piped(input: T): R {\n return fns.reduce((prev: any, fn: UnaryFunction) => fn(prev), input as any);\n };\n}\n", "import { Operator } from './Operator';\nimport { SafeSubscriber, Subscriber } from './Subscriber';\nimport { isSubscription, Subscription } from './Subscription';\nimport { TeardownLogic, OperatorFunction, Subscribable, Observer } from './types';\nimport { observable as Symbol_observable } from './symbol/observable';\nimport { pipeFromArray } from './util/pipe';\nimport { config } from './config';\nimport { isFunction } from './util/isFunction';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A representation of any set of values over any amount of time. This is the most basic building block\n * of RxJS.\n *\n * @class Observable\n */\nexport class Observable implements Subscribable {\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n source: Observable | undefined;\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n operator: Operator | undefined;\n\n /**\n * @constructor\n * @param {Function} subscribe the function that is called when the Observable is\n * initially subscribed to. This function is given a Subscriber, to which new values\n * can be `next`ed, or an `error` method can be called to raise an error, or\n * `complete` can be called to notify of a successful completion.\n */\n constructor(subscribe?: (this: Observable, subscriber: Subscriber) => TeardownLogic) {\n if (subscribe) {\n this._subscribe = subscribe;\n }\n }\n\n // HACK: Since TypeScript inherits static properties too, we have to\n // fight against TypeScript here so Subject can have a different static create signature\n /**\n * Creates a new Observable by calling the Observable constructor\n * @owner Observable\n * @method create\n * @param {Function} subscribe? the subscriber function to be passed to the Observable constructor\n * @return {Observable} a new observable\n * @nocollapse\n * @deprecated Use `new Observable()` instead. Will be removed in v8.\n */\n static create: (...args: any[]) => any = (subscribe?: (subscriber: Subscriber) => TeardownLogic) => {\n return new Observable(subscribe);\n };\n\n /**\n * Creates a new Observable, with this Observable instance as the source, and the passed\n * operator defined as the new observable's operator.\n * @method lift\n * @param operator the operator defining the operation to take on the observable\n * @return a new observable with the Operator applied\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * If you have implemented an operator using `lift`, it is recommended that you create an\n * operator by simply returning `new Observable()` directly. See \"Creating new operators from\n * scratch\" section here: https://rxjs.dev/guide/operators\n */\n lift(operator?: Operator): Observable {\n const observable = new Observable();\n observable.source = this;\n observable.operator = operator;\n return observable;\n }\n\n subscribe(observerOrNext?: Partial> | ((value: T) => void)): Subscription;\n /** @deprecated Instead of passing separate callback arguments, use an observer argument. Signatures taking separate callback arguments will be removed in v8. Details: https://rxjs.dev/deprecations/subscribe-arguments */\n subscribe(next?: ((value: T) => void) | null, error?: ((error: any) => void) | null, complete?: (() => void) | null): Subscription;\n /**\n * Invokes an execution of an Observable and registers Observer handlers for notifications it will emit.\n *\n * Use it when you have all these Observables, but still nothing is happening.\n *\n * `subscribe` is not a regular operator, but a method that calls Observable's internal `subscribe` function. It\n * might be for example a function that you passed to Observable's constructor, but most of the time it is\n * a library implementation, which defines what will be emitted by an Observable, and when it be will emitted. This means\n * that calling `subscribe` is actually the moment when Observable starts its work, not when it is created, as it is often\n * the thought.\n *\n * Apart from starting the execution of an Observable, this method allows you to listen for values\n * that an Observable emits, as well as for when it completes or errors. You can achieve this in two\n * of the following ways.\n *\n * The first way is creating an object that implements {@link Observer} interface. It should have methods\n * defined by that interface, but note that it should be just a regular JavaScript object, which you can create\n * yourself in any way you want (ES6 class, classic function constructor, object literal etc.). In particular, do\n * not attempt to use any RxJS implementation details to create Observers - you don't need them. Remember also\n * that your object does not have to implement all methods. If you find yourself creating a method that doesn't\n * do anything, you can simply omit it. Note however, if the `error` method is not provided and an error happens,\n * it will be thrown asynchronously. Errors thrown asynchronously cannot be caught using `try`/`catch`. Instead,\n * use the {@link onUnhandledError} configuration option or use a runtime handler (like `window.onerror` or\n * `process.on('error)`) to be notified of unhandled errors. Because of this, it's recommended that you provide\n * an `error` method to avoid missing thrown errors.\n *\n * The second way is to give up on Observer object altogether and simply provide callback functions in place of its methods.\n * This means you can provide three functions as arguments to `subscribe`, where the first function is equivalent\n * of a `next` method, the second of an `error` method and the third of a `complete` method. Just as in case of an Observer,\n * if you do not need to listen for something, you can omit a function by passing `undefined` or `null`,\n * since `subscribe` recognizes these functions by where they were placed in function call. When it comes\n * to the `error` function, as with an Observer, if not provided, errors emitted by an Observable will be thrown asynchronously.\n *\n * You can, however, subscribe with no parameters at all. This may be the case where you're not interested in terminal events\n * and you also handled emissions internally by using operators (e.g. using `tap`).\n *\n * Whichever style of calling `subscribe` you use, in both cases it returns a Subscription object.\n * This object allows you to call `unsubscribe` on it, which in turn will stop the work that an Observable does and will clean\n * up all resources that an Observable used. Note that cancelling a subscription will not call `complete` callback\n * provided to `subscribe` function, which is reserved for a regular completion signal that comes from an Observable.\n *\n * Remember that callbacks provided to `subscribe` are not guaranteed to be called asynchronously.\n * It is an Observable itself that decides when these functions will be called. For example {@link of}\n * by default emits all its values synchronously. Always check documentation for how given Observable\n * will behave when subscribed and if its default behavior can be modified with a `scheduler`.\n *\n * #### Examples\n *\n * Subscribe with an {@link guide/observer Observer}\n *\n * ```ts\n * import { of } from 'rxjs';\n *\n * const sumObserver = {\n * sum: 0,\n * next(value) {\n * console.log('Adding: ' + value);\n * this.sum = this.sum + value;\n * },\n * error() {\n * // We actually could just remove this method,\n * // since we do not really care about errors right now.\n * },\n * complete() {\n * console.log('Sum equals: ' + this.sum);\n * }\n * };\n *\n * of(1, 2, 3) // Synchronously emits 1, 2, 3 and then completes.\n * .subscribe(sumObserver);\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Subscribe with functions ({@link deprecations/subscribe-arguments deprecated})\n *\n * ```ts\n * import { of } from 'rxjs'\n *\n * let sum = 0;\n *\n * of(1, 2, 3).subscribe(\n * value => {\n * console.log('Adding: ' + value);\n * sum = sum + value;\n * },\n * undefined,\n * () => console.log('Sum equals: ' + sum)\n * );\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Cancel a subscription\n *\n * ```ts\n * import { interval } from 'rxjs';\n *\n * const subscription = interval(1000).subscribe({\n * next(num) {\n * console.log(num)\n * },\n * complete() {\n * // Will not be called, even when cancelling subscription.\n * console.log('completed!');\n * }\n * });\n *\n * setTimeout(() => {\n * subscription.unsubscribe();\n * console.log('unsubscribed!');\n * }, 2500);\n *\n * // Logs:\n * // 0 after 1s\n * // 1 after 2s\n * // 'unsubscribed!' after 2.5s\n * ```\n *\n * @param {Observer|Function} observerOrNext (optional) Either an observer with methods to be called,\n * or the first of three possible handlers, which is the handler for each value emitted from the subscribed\n * Observable.\n * @param {Function} error (optional) A handler for a terminal event resulting from an error. If no error handler is provided,\n * the error will be thrown asynchronously as unhandled.\n * @param {Function} complete (optional) A handler for a terminal event resulting from successful completion.\n * @return {Subscription} a subscription reference to the registered handlers\n * @method subscribe\n */\n subscribe(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((error: any) => void) | null,\n complete?: (() => void) | null\n ): Subscription {\n const subscriber = isSubscriber(observerOrNext) ? observerOrNext : new SafeSubscriber(observerOrNext, error, complete);\n\n errorContext(() => {\n const { operator, source } = this;\n subscriber.add(\n operator\n ? // We're dealing with a subscription in the\n // operator chain to one of our lifted operators.\n operator.call(subscriber, source)\n : source\n ? // If `source` has a value, but `operator` does not, something that\n // had intimate knowledge of our API, like our `Subject`, must have\n // set it. We're going to just call `_subscribe` directly.\n this._subscribe(subscriber)\n : // In all other cases, we're likely wrapping a user-provided initializer\n // function, so we need to catch errors and handle them appropriately.\n this._trySubscribe(subscriber)\n );\n });\n\n return subscriber;\n }\n\n /** @internal */\n protected _trySubscribe(sink: Subscriber): TeardownLogic {\n try {\n return this._subscribe(sink);\n } catch (err) {\n // We don't need to return anything in this case,\n // because it's just going to try to `add()` to a subscription\n // above.\n sink.error(err);\n }\n }\n\n /**\n * Used as a NON-CANCELLABLE means of subscribing to an observable, for use with\n * APIs that expect promises, like `async/await`. You cannot unsubscribe from this.\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * #### Example\n *\n * ```ts\n * import { interval, take } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(4));\n *\n * async function getTotal() {\n * let total = 0;\n *\n * await source$.forEach(value => {\n * total += value;\n * console.log('observable -> ' + value);\n * });\n *\n * return total;\n * }\n *\n * getTotal().then(\n * total => console.log('Total: ' + total)\n * );\n *\n * // Expected:\n * // 'observable -> 0'\n * // 'observable -> 1'\n * // 'observable -> 2'\n * // 'observable -> 3'\n * // 'Total: 6'\n * ```\n *\n * @param next a handler for each value emitted by the observable\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n */\n forEach(next: (value: T) => void): Promise;\n\n /**\n * @param next a handler for each value emitted by the observable\n * @param promiseCtor a constructor function used to instantiate the Promise\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n * @deprecated Passing a Promise constructor will no longer be available\n * in upcoming versions of RxJS. This is because it adds weight to the library, for very\n * little benefit. If you need this functionality, it is recommended that you either\n * polyfill Promise, or you create an adapter to convert the returned native promise\n * to whatever promise implementation you wanted. Will be removed in v8.\n */\n forEach(next: (value: T) => void, promiseCtor: PromiseConstructorLike): Promise;\n\n forEach(next: (value: T) => void, promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n const subscriber = new SafeSubscriber({\n next: (value) => {\n try {\n next(value);\n } catch (err) {\n reject(err);\n subscriber.unsubscribe();\n }\n },\n error: reject,\n complete: resolve,\n });\n this.subscribe(subscriber);\n }) as Promise;\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): TeardownLogic {\n return this.source?.subscribe(subscriber);\n }\n\n /**\n * An interop point defined by the es7-observable spec https://github.com/zenparsing/es-observable\n * @method Symbol.observable\n * @return {Observable} this instance of the observable\n */\n [Symbol_observable]() {\n return this;\n }\n\n /* tslint:disable:max-line-length */\n pipe(): Observable;\n pipe(op1: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction, op3: OperatorFunction): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction,\n ...operations: OperatorFunction[]\n ): Observable;\n /* tslint:enable:max-line-length */\n\n /**\n * Used to stitch together functional operators into a chain.\n * @method pipe\n * @return {Observable} the Observable result of all of the operators having\n * been called in the order they were passed in.\n *\n * ## Example\n *\n * ```ts\n * import { interval, filter, map, scan } from 'rxjs';\n *\n * interval(1000)\n * .pipe(\n * filter(x => x % 2 === 0),\n * map(x => x + x),\n * scan((acc, x) => acc + x)\n * )\n * .subscribe(x => console.log(x));\n * ```\n */\n pipe(...operations: OperatorFunction[]): Observable {\n return pipeFromArray(operations)(this);\n }\n\n /* tslint:disable:max-line-length */\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: typeof Promise): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: PromiseConstructorLike): Promise;\n /* tslint:enable:max-line-length */\n\n /**\n * Subscribe to this Observable and get a Promise resolving on\n * `complete` with the last emission (if any).\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * @method toPromise\n * @param [promiseCtor] a constructor function used to instantiate\n * the Promise\n * @return A Promise that resolves with the last value emit, or\n * rejects on an error. If there were no emissions, Promise\n * resolves with undefined.\n * @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise\n */\n toPromise(promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n let value: T | undefined;\n this.subscribe(\n (x: T) => (value = x),\n (err: any) => reject(err),\n () => resolve(value)\n );\n }) as Promise;\n }\n}\n\n/**\n * Decides between a passed promise constructor from consuming code,\n * A default configured promise constructor, and the native promise\n * constructor and returns it. If nothing can be found, it will throw\n * an error.\n * @param promiseCtor The optional promise constructor to passed by consuming code\n */\nfunction getPromiseCtor(promiseCtor: PromiseConstructorLike | undefined) {\n return promiseCtor ?? config.Promise ?? Promise;\n}\n\nfunction isObserver(value: any): value is Observer {\n return value && isFunction(value.next) && isFunction(value.error) && isFunction(value.complete);\n}\n\nfunction isSubscriber(value: any): value is Subscriber {\n return (value && value instanceof Subscriber) || (isObserver(value) && isSubscription(value));\n}\n", "import { Observable } from '../Observable';\nimport { Subscriber } from '../Subscriber';\nimport { OperatorFunction } from '../types';\nimport { isFunction } from './isFunction';\n\n/**\n * Used to determine if an object is an Observable with a lift function.\n */\nexport function hasLift(source: any): source is { lift: InstanceType['lift'] } {\n return isFunction(source?.lift);\n}\n\n/**\n * Creates an `OperatorFunction`. Used to define operators throughout the library in a concise way.\n * @param init The logic to connect the liftedSource to the subscriber at the moment of subscription.\n */\nexport function operate(\n init: (liftedSource: Observable, subscriber: Subscriber) => (() => void) | void\n): OperatorFunction {\n return (source: Observable) => {\n if (hasLift(source)) {\n return source.lift(function (this: Subscriber, liftedSource: Observable) {\n try {\n return init(liftedSource, this);\n } catch (err) {\n this.error(err);\n }\n });\n }\n throw new TypeError('Unable to lift unknown Observable type');\n };\n}\n", "import { Subscriber } from '../Subscriber';\n\n/**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional teardown logic here. This will only be called on teardown if the\n * subscriber itself is not already closed. This is called after all other teardown logic is executed.\n */\nexport function createOperatorSubscriber(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n onFinalize?: () => void\n): Subscriber {\n return new OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize);\n}\n\n/**\n * A generic helper for allowing operators to be created with a Subscriber and\n * use closures to capture necessary state from the operator function itself.\n */\nexport class OperatorSubscriber extends Subscriber {\n /**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional finalization logic here. This will only be called on finalization if the\n * subscriber itself is not already closed. This is called after all other finalization logic is executed.\n * @param shouldUnsubscribe An optional check to see if an unsubscribe call should truly unsubscribe.\n * NOTE: This currently **ONLY** exists to support the strange behavior of {@link groupBy}, where unsubscription\n * to the resulting observable does not actually disconnect from the source if there are active subscriptions\n * to any grouped observable. (DO NOT EXPOSE OR USE EXTERNALLY!!!)\n */\n constructor(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n private onFinalize?: () => void,\n private shouldUnsubscribe?: () => boolean\n ) {\n // It's important - for performance reasons - that all of this class's\n // members are initialized and that they are always initialized in the same\n // order. This will ensure that all OperatorSubscriber instances have the\n // same hidden class in V8. This, in turn, will help keep the number of\n // hidden classes involved in property accesses within the base class as\n // low as possible. If the number of hidden classes involved exceeds four,\n // the property accesses will become megamorphic and performance penalties\n // will be incurred - i.e. inline caches won't be used.\n //\n // The reasons for ensuring all instances have the same hidden class are\n // further discussed in this blog post from Benedikt Meurer:\n // https://benediktmeurer.de/2018/03/23/impact-of-polymorphism-on-component-based-frameworks-like-react/\n super(destination);\n this._next = onNext\n ? function (this: OperatorSubscriber, value: T) {\n try {\n onNext(value);\n } catch (err) {\n destination.error(err);\n }\n }\n : super._next;\n this._error = onError\n ? function (this: OperatorSubscriber, err: any) {\n try {\n onError(err);\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._error;\n this._complete = onComplete\n ? function (this: OperatorSubscriber) {\n try {\n onComplete();\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._complete;\n }\n\n unsubscribe() {\n if (!this.shouldUnsubscribe || this.shouldUnsubscribe()) {\n const { closed } = this;\n super.unsubscribe();\n // Execute additional teardown if we have any and we didn't already do so.\n !closed && this.onFinalize?.();\n }\n }\n}\n", "import { Subscription } from '../Subscription';\n\ninterface AnimationFrameProvider {\n schedule(callback: FrameRequestCallback): Subscription;\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n delegate:\n | {\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n }\n | undefined;\n}\n\nexport const animationFrameProvider: AnimationFrameProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n schedule(callback) {\n let request = requestAnimationFrame;\n let cancel: typeof cancelAnimationFrame | undefined = cancelAnimationFrame;\n const { delegate } = animationFrameProvider;\n if (delegate) {\n request = delegate.requestAnimationFrame;\n cancel = delegate.cancelAnimationFrame;\n }\n const handle = request((timestamp) => {\n // Clear the cancel function. The request has been fulfilled, so\n // attempting to cancel the request upon unsubscription would be\n // pointless.\n cancel = undefined;\n callback(timestamp);\n });\n return new Subscription(() => cancel?.(handle));\n },\n requestAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.requestAnimationFrame || requestAnimationFrame)(...args);\n },\n cancelAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.cancelAnimationFrame || cancelAnimationFrame)(...args);\n },\n delegate: undefined,\n};\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface ObjectUnsubscribedError extends Error {}\n\nexport interface ObjectUnsubscribedErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (): ObjectUnsubscribedError;\n}\n\n/**\n * An error thrown when an action is invalid because the object has been\n * unsubscribed.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n *\n * @class ObjectUnsubscribedError\n */\nexport const ObjectUnsubscribedError: ObjectUnsubscribedErrorCtor = createErrorClass(\n (_super) =>\n function ObjectUnsubscribedErrorImpl(this: any) {\n _super(this);\n this.name = 'ObjectUnsubscribedError';\n this.message = 'object unsubscribed';\n }\n);\n", "import { Operator } from './Operator';\nimport { Observable } from './Observable';\nimport { Subscriber } from './Subscriber';\nimport { Subscription, EMPTY_SUBSCRIPTION } from './Subscription';\nimport { Observer, SubscriptionLike, TeardownLogic } from './types';\nimport { ObjectUnsubscribedError } from './util/ObjectUnsubscribedError';\nimport { arrRemove } from './util/arrRemove';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A Subject is a special type of Observable that allows values to be\n * multicasted to many Observers. Subjects are like EventEmitters.\n *\n * Every Subject is an Observable and an Observer. You can subscribe to a\n * Subject, and you can call next to feed values as well as error and complete.\n */\nexport class Subject extends Observable implements SubscriptionLike {\n closed = false;\n\n private currentObservers: Observer[] | null = null;\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n observers: Observer[] = [];\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n isStopped = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n hasError = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n thrownError: any = null;\n\n /**\n * Creates a \"subject\" by basically gluing an observer to an observable.\n *\n * @nocollapse\n * @deprecated Recommended you do not use. Will be removed at some point in the future. Plans for replacement still under discussion.\n */\n static create: (...args: any[]) => any = (destination: Observer, source: Observable): AnonymousSubject => {\n return new AnonymousSubject(destination, source);\n };\n\n constructor() {\n // NOTE: This must be here to obscure Observable's constructor.\n super();\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n lift(operator: Operator): Observable {\n const subject = new AnonymousSubject(this, this);\n subject.operator = operator as any;\n return subject as any;\n }\n\n /** @internal */\n protected _throwIfClosed() {\n if (this.closed) {\n throw new ObjectUnsubscribedError();\n }\n }\n\n next(value: T) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n if (!this.currentObservers) {\n this.currentObservers = Array.from(this.observers);\n }\n for (const observer of this.currentObservers) {\n observer.next(value);\n }\n }\n });\n }\n\n error(err: any) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.hasError = this.isStopped = true;\n this.thrownError = err;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.error(err);\n }\n }\n });\n }\n\n complete() {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.isStopped = true;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.complete();\n }\n }\n });\n }\n\n unsubscribe() {\n this.isStopped = this.closed = true;\n this.observers = this.currentObservers = null!;\n }\n\n get observed() {\n return this.observers?.length > 0;\n }\n\n /** @internal */\n protected _trySubscribe(subscriber: Subscriber): TeardownLogic {\n this._throwIfClosed();\n return super._trySubscribe(subscriber);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._checkFinalizedStatuses(subscriber);\n return this._innerSubscribe(subscriber);\n }\n\n /** @internal */\n protected _innerSubscribe(subscriber: Subscriber) {\n const { hasError, isStopped, observers } = this;\n if (hasError || isStopped) {\n return EMPTY_SUBSCRIPTION;\n }\n this.currentObservers = null;\n observers.push(subscriber);\n return new Subscription(() => {\n this.currentObservers = null;\n arrRemove(observers, subscriber);\n });\n }\n\n /** @internal */\n protected _checkFinalizedStatuses(subscriber: Subscriber) {\n const { hasError, thrownError, isStopped } = this;\n if (hasError) {\n subscriber.error(thrownError);\n } else if (isStopped) {\n subscriber.complete();\n }\n }\n\n /**\n * Creates a new Observable with this Subject as the source. You can do this\n * to create custom Observer-side logic of the Subject and conceal it from\n * code that uses the Observable.\n * @return {Observable} Observable that the Subject casts to\n */\n asObservable(): Observable {\n const observable: any = new Observable();\n observable.source = this;\n return observable;\n }\n}\n\n/**\n * @class AnonymousSubject\n */\nexport class AnonymousSubject extends Subject {\n constructor(\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n public destination?: Observer,\n source?: Observable\n ) {\n super();\n this.source = source;\n }\n\n next(value: T) {\n this.destination?.next?.(value);\n }\n\n error(err: any) {\n this.destination?.error?.(err);\n }\n\n complete() {\n this.destination?.complete?.();\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n return this.source?.subscribe(subscriber) ?? EMPTY_SUBSCRIPTION;\n }\n}\n", "import { TimestampProvider } from '../types';\n\ninterface DateTimestampProvider extends TimestampProvider {\n delegate: TimestampProvider | undefined;\n}\n\nexport const dateTimestampProvider: DateTimestampProvider = {\n now() {\n // Use the variable rather than `this` so that the function can be called\n // without being bound to the provider.\n return (dateTimestampProvider.delegate || Date).now();\n },\n delegate: undefined,\n};\n", "import { Subject } from './Subject';\nimport { TimestampProvider } from './types';\nimport { Subscriber } from './Subscriber';\nimport { Subscription } from './Subscription';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * A variant of {@link Subject} that \"replays\" old values to new subscribers by emitting them when they first subscribe.\n *\n * `ReplaySubject` has an internal buffer that will store a specified number of values that it has observed. Like `Subject`,\n * `ReplaySubject` \"observes\" values by having them passed to its `next` method. When it observes a value, it will store that\n * value for a time determined by the configuration of the `ReplaySubject`, as passed to its constructor.\n *\n * When a new subscriber subscribes to the `ReplaySubject` instance, it will synchronously emit all values in its buffer in\n * a First-In-First-Out (FIFO) manner. The `ReplaySubject` will also complete, if it has observed completion; and it will\n * error if it has observed an error.\n *\n * There are two main configuration items to be concerned with:\n *\n * 1. `bufferSize` - This will determine how many items are stored in the buffer, defaults to infinite.\n * 2. `windowTime` - The amount of time to hold a value in the buffer before removing it from the buffer.\n *\n * Both configurations may exist simultaneously. So if you would like to buffer a maximum of 3 values, as long as the values\n * are less than 2 seconds old, you could do so with a `new ReplaySubject(3, 2000)`.\n *\n * ### Differences with BehaviorSubject\n *\n * `BehaviorSubject` is similar to `new ReplaySubject(1)`, with a couple of exceptions:\n *\n * 1. `BehaviorSubject` comes \"primed\" with a single value upon construction.\n * 2. `ReplaySubject` will replay values, even after observing an error, where `BehaviorSubject` will not.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n * @see {@link shareReplay}\n */\nexport class ReplaySubject extends Subject {\n private _buffer: (T | number)[] = [];\n private _infiniteTimeWindow = true;\n\n /**\n * @param bufferSize The size of the buffer to replay on subscription\n * @param windowTime The amount of time the buffered items will stay buffered\n * @param timestampProvider An object with a `now()` method that provides the current timestamp. This is used to\n * calculate the amount of time something has been buffered.\n */\n constructor(\n private _bufferSize = Infinity,\n private _windowTime = Infinity,\n private _timestampProvider: TimestampProvider = dateTimestampProvider\n ) {\n super();\n this._infiniteTimeWindow = _windowTime === Infinity;\n this._bufferSize = Math.max(1, _bufferSize);\n this._windowTime = Math.max(1, _windowTime);\n }\n\n next(value: T): void {\n const { isStopped, _buffer, _infiniteTimeWindow, _timestampProvider, _windowTime } = this;\n if (!isStopped) {\n _buffer.push(value);\n !_infiniteTimeWindow && _buffer.push(_timestampProvider.now() + _windowTime);\n }\n this._trimBuffer();\n super.next(value);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._trimBuffer();\n\n const subscription = this._innerSubscribe(subscriber);\n\n const { _infiniteTimeWindow, _buffer } = this;\n // We use a copy here, so reentrant code does not mutate our array while we're\n // emitting it to a new subscriber.\n const copy = _buffer.slice();\n for (let i = 0; i < copy.length && !subscriber.closed; i += _infiniteTimeWindow ? 1 : 2) {\n subscriber.next(copy[i] as T);\n }\n\n this._checkFinalizedStatuses(subscriber);\n\n return subscription;\n }\n\n private _trimBuffer() {\n const { _bufferSize, _timestampProvider, _buffer, _infiniteTimeWindow } = this;\n // If we don't have an infinite buffer size, and we're over the length,\n // use splice to truncate the old buffer values off. Note that we have to\n // double the size for instances where we're not using an infinite time window\n // because we're storing the values and the timestamps in the same array.\n const adjustedBufferSize = (_infiniteTimeWindow ? 1 : 2) * _bufferSize;\n _bufferSize < Infinity && adjustedBufferSize < _buffer.length && _buffer.splice(0, _buffer.length - adjustedBufferSize);\n\n // Now, if we're not in an infinite time window, remove all values where the time is\n // older than what is allowed.\n if (!_infiniteTimeWindow) {\n const now = _timestampProvider.now();\n let last = 0;\n // Search the array for the first timestamp that isn't expired and\n // truncate the buffer up to that point.\n for (let i = 1; i < _buffer.length && (_buffer[i] as number) <= now; i += 2) {\n last = i;\n }\n last && _buffer.splice(0, last + 1);\n }\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Subscription } from '../Subscription';\nimport { SchedulerAction } from '../types';\n\n/**\n * A unit of work to be executed in a `scheduler`. An action is typically\n * created from within a {@link SchedulerLike} and an RxJS user does not need to concern\n * themselves about creating and manipulating an Action.\n *\n * ```ts\n * class Action extends Subscription {\n * new (scheduler: Scheduler, work: (state?: T) => void);\n * schedule(state?: T, delay: number = 0): Subscription;\n * }\n * ```\n *\n * @class Action\n */\nexport class Action extends Subscription {\n constructor(scheduler: Scheduler, work: (this: SchedulerAction, state?: T) => void) {\n super();\n }\n /**\n * Schedules this action on its parent {@link SchedulerLike} for execution. May be passed\n * some context object, `state`. May happen at some point in the future,\n * according to the `delay` parameter, if specified.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler.\n * @return {void}\n */\n public schedule(state?: T, delay: number = 0): Subscription {\n return this;\n }\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetIntervalFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearIntervalFunction = (handle: TimerHandle) => void;\n\ninterface IntervalProvider {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n delegate:\n | {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n }\n | undefined;\n}\n\nexport const intervalProvider: IntervalProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setInterval(handler: () => void, timeout?: number, ...args) {\n const { delegate } = intervalProvider;\n if (delegate?.setInterval) {\n return delegate.setInterval(handler, timeout, ...args);\n }\n return setInterval(handler, timeout, ...args);\n },\n clearInterval(handle) {\n const { delegate } = intervalProvider;\n return (delegate?.clearInterval || clearInterval)(handle as any);\n },\n delegate: undefined,\n};\n", "import { Action } from './Action';\nimport { SchedulerAction } from '../types';\nimport { Subscription } from '../Subscription';\nimport { AsyncScheduler } from './AsyncScheduler';\nimport { intervalProvider } from './intervalProvider';\nimport { arrRemove } from '../util/arrRemove';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncAction extends Action {\n public id: TimerHandle | undefined;\n public state?: T;\n // @ts-ignore: Property has no initializer and is not definitely assigned\n public delay: number;\n protected pending: boolean = false;\n\n constructor(protected scheduler: AsyncScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n public schedule(state?: T, delay: number = 0): Subscription {\n if (this.closed) {\n return this;\n }\n\n // Always replace the current state with the new state.\n this.state = state;\n\n const id = this.id;\n const scheduler = this.scheduler;\n\n //\n // Important implementation note:\n //\n // Actions only execute once by default, unless rescheduled from within the\n // scheduled callback. This allows us to implement single and repeat\n // actions via the same code path, without adding API surface area, as well\n // as mimic traditional recursion but across asynchronous boundaries.\n //\n // However, JS runtimes and timers distinguish between intervals achieved by\n // serial `setTimeout` calls vs. a single `setInterval` call. An interval of\n // serial `setTimeout` calls can be individually delayed, which delays\n // scheduling the next `setTimeout`, and so on. `setInterval` attempts to\n // guarantee the interval callback will be invoked more precisely to the\n // interval period, regardless of load.\n //\n // Therefore, we use `setInterval` to schedule single and repeat actions.\n // If the action reschedules itself with the same delay, the interval is not\n // canceled. If the action doesn't reschedule, or reschedules with a\n // different delay, the interval will be canceled after scheduled callback\n // execution.\n //\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, delay);\n }\n\n // Set the pending flag indicating that this action has been scheduled, or\n // has recursively rescheduled itself.\n this.pending = true;\n\n this.delay = delay;\n // If this action has already an async Id, don't request a new one.\n this.id = this.id ?? this.requestAsyncId(scheduler, this.id, delay);\n\n return this;\n }\n\n protected requestAsyncId(scheduler: AsyncScheduler, _id?: TimerHandle, delay: number = 0): TimerHandle {\n return intervalProvider.setInterval(scheduler.flush.bind(scheduler, this), delay);\n }\n\n protected recycleAsyncId(_scheduler: AsyncScheduler, id?: TimerHandle, delay: number | null = 0): TimerHandle | undefined {\n // If this action is rescheduled with the same delay time, don't clear the interval id.\n if (delay != null && this.delay === delay && this.pending === false) {\n return id;\n }\n // Otherwise, if the action's delay time is different from the current delay,\n // or the action has been rescheduled before it's executed, clear the interval id\n if (id != null) {\n intervalProvider.clearInterval(id);\n }\n\n return undefined;\n }\n\n /**\n * Immediately executes this action and the `work` it contains.\n * @return {any}\n */\n public execute(state: T, delay: number): any {\n if (this.closed) {\n return new Error('executing a cancelled action');\n }\n\n this.pending = false;\n const error = this._execute(state, delay);\n if (error) {\n return error;\n } else if (this.pending === false && this.id != null) {\n // Dequeue if the action didn't reschedule itself. Don't call\n // unsubscribe(), because the action could reschedule later.\n // For example:\n // ```\n // scheduler.schedule(function doWork(counter) {\n // /* ... I'm a busy worker bee ... */\n // var originalAction = this;\n // /* wait 100ms before rescheduling the action */\n // setTimeout(function () {\n // originalAction.schedule(counter + 1);\n // }, 100);\n // }, 1000);\n // ```\n this.id = this.recycleAsyncId(this.scheduler, this.id, null);\n }\n }\n\n protected _execute(state: T, _delay: number): any {\n let errored: boolean = false;\n let errorValue: any;\n try {\n this.work(state);\n } catch (e) {\n errored = true;\n // HACK: Since code elsewhere is relying on the \"truthiness\" of the\n // return here, we can't have it return \"\" or 0 or false.\n // TODO: Clean this up when we refactor schedulers mid-version-8 or so.\n errorValue = e ? e : new Error('Scheduled action threw falsy error');\n }\n if (errored) {\n this.unsubscribe();\n return errorValue;\n }\n }\n\n unsubscribe() {\n if (!this.closed) {\n const { id, scheduler } = this;\n const { actions } = scheduler;\n\n this.work = this.state = this.scheduler = null!;\n this.pending = false;\n\n arrRemove(actions, this);\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, null);\n }\n\n this.delay = null!;\n super.unsubscribe();\n }\n }\n}\n", "import { Action } from './scheduler/Action';\nimport { Subscription } from './Subscription';\nimport { SchedulerLike, SchedulerAction } from './types';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * An execution context and a data structure to order tasks and schedule their\n * execution. Provides a notion of (potentially virtual) time, through the\n * `now()` getter method.\n *\n * Each unit of work in a Scheduler is called an `Action`.\n *\n * ```ts\n * class Scheduler {\n * now(): number;\n * schedule(work, delay?, state?): Subscription;\n * }\n * ```\n *\n * @class Scheduler\n * @deprecated Scheduler is an internal implementation detail of RxJS, and\n * should not be used directly. Rather, create your own class and implement\n * {@link SchedulerLike}. Will be made internal in v8.\n */\nexport class Scheduler implements SchedulerLike {\n public static now: () => number = dateTimestampProvider.now;\n\n constructor(private schedulerActionCtor: typeof Action, now: () => number = Scheduler.now) {\n this.now = now;\n }\n\n /**\n * A getter method that returns a number representing the current time\n * (at the time this function was called) according to the scheduler's own\n * internal clock.\n * @return {number} A number that represents the current time. May or may not\n * have a relation to wall-clock time. May or may not refer to a time unit\n * (e.g. milliseconds).\n */\n public now: () => number;\n\n /**\n * Schedules a function, `work`, for execution. May happen at some point in\n * the future, according to the `delay` parameter, if specified. May be passed\n * some context object, `state`, which will be passed to the `work` function.\n *\n * The given arguments will be processed an stored as an Action object in a\n * queue of actions.\n *\n * @param {function(state: ?T): ?Subscription} work A function representing a\n * task, or some unit of work to be executed by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler itself.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @return {Subscription} A subscription in order to be able to unsubscribe\n * the scheduled work.\n */\n public schedule(work: (this: SchedulerAction, state?: T) => void, delay: number = 0, state?: T): Subscription {\n return new this.schedulerActionCtor(this, work).schedule(state, delay);\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Action } from './Action';\nimport { AsyncAction } from './AsyncAction';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncScheduler extends Scheduler {\n public actions: Array> = [];\n /**\n * A flag to indicate whether the Scheduler is currently executing a batch of\n * queued actions.\n * @type {boolean}\n * @internal\n */\n public _active: boolean = false;\n /**\n * An internal ID used to track the latest asynchronous task such as those\n * coming from `setTimeout`, `setInterval`, `requestAnimationFrame`, and\n * others.\n * @type {any}\n * @internal\n */\n public _scheduled: TimerHandle | undefined;\n\n constructor(SchedulerAction: typeof Action, now: () => number = Scheduler.now) {\n super(SchedulerAction, now);\n }\n\n public flush(action: AsyncAction): void {\n const { actions } = this;\n\n if (this._active) {\n actions.push(action);\n return;\n }\n\n let error: any;\n this._active = true;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions.shift()!)); // exhaust the scheduler queue\n\n this._active = false;\n\n if (error) {\n while ((action = actions.shift()!)) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\n/**\n *\n * Async Scheduler\n *\n * Schedule task as if you used setTimeout(task, duration)\n *\n * `async` scheduler schedules tasks asynchronously, by putting them on the JavaScript\n * event loop queue. It is best used to delay tasks in time or to schedule tasks repeating\n * in intervals.\n *\n * If you just want to \"defer\" task, that is to perform it right after currently\n * executing synchronous code ends (commonly achieved by `setTimeout(deferredTask, 0)`),\n * better choice will be the {@link asapScheduler} scheduler.\n *\n * ## Examples\n * Use async scheduler to delay task\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * const task = () => console.log('it works!');\n *\n * asyncScheduler.schedule(task, 2000);\n *\n * // After 2 seconds logs:\n * // \"it works!\"\n * ```\n *\n * Use async scheduler to repeat task in intervals\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * function task(state) {\n * console.log(state);\n * this.schedule(state + 1, 1000); // `this` references currently executing Action,\n * // which we reschedule with new state and delay\n * }\n *\n * asyncScheduler.schedule(task, 3000, 0);\n *\n * // Logs:\n * // 0 after 3s\n * // 1 after 4s\n * // 2 after 5s\n * // 3 after 6s\n * ```\n */\n\nexport const asyncScheduler = new AsyncScheduler(AsyncAction);\n\n/**\n * @deprecated Renamed to {@link asyncScheduler}. Will be removed in v8.\n */\nexport const async = asyncScheduler;\n", "import { AsyncAction } from './AsyncAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\nimport { SchedulerAction } from '../types';\nimport { animationFrameProvider } from './animationFrameProvider';\nimport { TimerHandle } from './timerHandle';\n\nexport class AnimationFrameAction extends AsyncAction {\n constructor(protected scheduler: AnimationFrameScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n protected requestAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle {\n // If delay is greater than 0, request as an async action.\n if (delay !== null && delay > 0) {\n return super.requestAsyncId(scheduler, id, delay);\n }\n // Push the action to the end of the scheduler queue.\n scheduler.actions.push(this);\n // If an animation frame has already been requested, don't request another\n // one. If an animation frame hasn't been requested yet, request one. Return\n // the current animation frame request id.\n return scheduler._scheduled || (scheduler._scheduled = animationFrameProvider.requestAnimationFrame(() => scheduler.flush(undefined)));\n }\n\n protected recycleAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle | undefined {\n // If delay exists and is greater than 0, or if the delay is null (the\n // action wasn't rescheduled) but was originally scheduled as an async\n // action, then recycle as an async action.\n if (delay != null ? delay > 0 : this.delay > 0) {\n return super.recycleAsyncId(scheduler, id, delay);\n }\n // If the scheduler queue has no remaining actions with the same async id,\n // cancel the requested animation frame and set the scheduled flag to\n // undefined so the next AnimationFrameAction will request its own.\n const { actions } = scheduler;\n if (id != null && actions[actions.length - 1]?.id !== id) {\n animationFrameProvider.cancelAnimationFrame(id as number);\n scheduler._scheduled = undefined;\n }\n // Return undefined so the action knows to request a new async id if it's rescheduled.\n return undefined;\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\nexport class AnimationFrameScheduler extends AsyncScheduler {\n public flush(action?: AsyncAction): void {\n this._active = true;\n // The async id that effects a call to flush is stored in _scheduled.\n // Before executing an action, it's necessary to check the action's async\n // id to determine whether it's supposed to be executed in the current\n // flush.\n // Previous implementations of this method used a count to determine this,\n // but that was unsound, as actions that are unsubscribed - i.e. cancelled -\n // are removed from the actions array and that can shift actions that are\n // scheduled to be executed in a subsequent flush into positions at which\n // they are executed within the current flush.\n const flushId = this._scheduled;\n this._scheduled = undefined;\n\n const { actions } = this;\n let error: any;\n action = action || actions.shift()!;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions[0]) && action.id === flushId && actions.shift());\n\n this._active = false;\n\n if (error) {\n while ((action = actions[0]) && action.id === flushId && actions.shift()) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AnimationFrameAction } from './AnimationFrameAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\n\n/**\n *\n * Animation Frame Scheduler\n *\n * Perform task when `window.requestAnimationFrame` would fire\n *\n * When `animationFrame` scheduler is used with delay, it will fall back to {@link asyncScheduler} scheduler\n * behaviour.\n *\n * Without delay, `animationFrame` scheduler can be used to create smooth browser animations.\n * It makes sure scheduled task will happen just before next browser content repaint,\n * thus performing animations as efficiently as possible.\n *\n * ## Example\n * Schedule div height animation\n * ```ts\n * // html:
\n * import { animationFrameScheduler } from 'rxjs';\n *\n * const div = document.querySelector('div');\n *\n * animationFrameScheduler.schedule(function(height) {\n * div.style.height = height + \"px\";\n *\n * this.schedule(height + 1); // `this` references currently executing Action,\n * // which we reschedule with new state\n * }, 0, 0);\n *\n * // You will see a div element growing in height\n * ```\n */\n\nexport const animationFrameScheduler = new AnimationFrameScheduler(AnimationFrameAction);\n\n/**\n * @deprecated Renamed to {@link animationFrameScheduler}. Will be removed in v8.\n */\nexport const animationFrame = animationFrameScheduler;\n", "import { Observable } from '../Observable';\nimport { SchedulerLike } from '../types';\n\n/**\n * A simple Observable that emits no items to the Observer and immediately\n * emits a complete notification.\n *\n * Just emits 'complete', and nothing else.\n *\n * ![](empty.png)\n *\n * A simple Observable that only emits the complete notification. It can be used\n * for composing with other Observables, such as in a {@link mergeMap}.\n *\n * ## Examples\n *\n * Log complete notification\n *\n * ```ts\n * import { EMPTY } from 'rxjs';\n *\n * EMPTY.subscribe({\n * next: () => console.log('Next'),\n * complete: () => console.log('Complete!')\n * });\n *\n * // Outputs\n * // Complete!\n * ```\n *\n * Emit the number 7, then complete\n *\n * ```ts\n * import { EMPTY, startWith } from 'rxjs';\n *\n * const result = EMPTY.pipe(startWith(7));\n * result.subscribe(x => console.log(x));\n *\n * // Outputs\n * // 7\n * ```\n *\n * Map and flatten only odd numbers to the sequence `'a'`, `'b'`, `'c'`\n *\n * ```ts\n * import { interval, mergeMap, of, EMPTY } from 'rxjs';\n *\n * const interval$ = interval(1000);\n * const result = interval$.pipe(\n * mergeMap(x => x % 2 === 1 ? of('a', 'b', 'c') : EMPTY),\n * );\n * result.subscribe(x => console.log(x));\n *\n * // Results in the following to the console:\n * // x is equal to the count on the interval, e.g. (0, 1, 2, 3, ...)\n * // x will occur every 1000ms\n * // if x % 2 is equal to 1, print a, b, c (each on its own)\n * // if x % 2 is not equal to 1, nothing will be output\n * ```\n *\n * @see {@link Observable}\n * @see {@link NEVER}\n * @see {@link of}\n * @see {@link throwError}\n */\nexport const EMPTY = new Observable((subscriber) => subscriber.complete());\n\n/**\n * @param scheduler A {@link SchedulerLike} to use for scheduling\n * the emission of the complete notification.\n * @deprecated Replaced with the {@link EMPTY} constant or {@link scheduled} (e.g. `scheduled([], scheduler)`). Will be removed in v8.\n */\nexport function empty(scheduler?: SchedulerLike) {\n return scheduler ? emptyScheduled(scheduler) : EMPTY;\n}\n\nfunction emptyScheduled(scheduler: SchedulerLike) {\n return new Observable((subscriber) => scheduler.schedule(() => subscriber.complete()));\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport function isScheduler(value: any): value is SchedulerLike {\n return value && isFunction(value.schedule);\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\nimport { isScheduler } from './isScheduler';\n\nfunction last(arr: T[]): T | undefined {\n return arr[arr.length - 1];\n}\n\nexport function popResultSelector(args: any[]): ((...args: unknown[]) => unknown) | undefined {\n return isFunction(last(args)) ? args.pop() : undefined;\n}\n\nexport function popScheduler(args: any[]): SchedulerLike | undefined {\n return isScheduler(last(args)) ? args.pop() : undefined;\n}\n\nexport function popNumber(args: any[], defaultValue: number): number {\n return typeof last(args) === 'number' ? args.pop()! : defaultValue;\n}\n", "export const isArrayLike = ((x: any): x is ArrayLike => x && typeof x.length === 'number' && typeof x !== 'function');", "import { isFunction } from \"./isFunction\";\n\n/**\n * Tests to see if the object is \"thennable\".\n * @param value the object to test\n */\nexport function isPromise(value: any): value is PromiseLike {\n return isFunction(value?.then);\n}\n", "import { InteropObservable } from '../types';\nimport { observable as Symbol_observable } from '../symbol/observable';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being Observable (but not necessary an Rx Observable) */\nexport function isInteropObservable(input: any): input is InteropObservable {\n return isFunction(input[Symbol_observable]);\n}\n", "import { isFunction } from './isFunction';\n\nexport function isAsyncIterable(obj: any): obj is AsyncIterable {\n return Symbol.asyncIterator && isFunction(obj?.[Symbol.asyncIterator]);\n}\n", "/**\n * Creates the TypeError to throw if an invalid object is passed to `from` or `scheduled`.\n * @param input The object that was passed.\n */\nexport function createInvalidObservableTypeError(input: any) {\n // TODO: We should create error codes that can be looked up, so this can be less verbose.\n return new TypeError(\n `You provided ${\n input !== null && typeof input === 'object' ? 'an invalid object' : `'${input}'`\n } where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.`\n );\n}\n", "export function getSymbolIterator(): symbol {\n if (typeof Symbol !== 'function' || !Symbol.iterator) {\n return '@@iterator' as any;\n }\n\n return Symbol.iterator;\n}\n\nexport const iterator = getSymbolIterator();\n", "import { iterator as Symbol_iterator } from '../symbol/iterator';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being an Iterable */\nexport function isIterable(input: any): input is Iterable {\n return isFunction(input?.[Symbol_iterator]);\n}\n", "import { ReadableStreamLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport async function* readableStreamLikeToAsyncGenerator(readableStream: ReadableStreamLike): AsyncGenerator {\n const reader = readableStream.getReader();\n try {\n while (true) {\n const { value, done } = await reader.read();\n if (done) {\n return;\n }\n yield value!;\n }\n } finally {\n reader.releaseLock();\n }\n}\n\nexport function isReadableStreamLike(obj: any): obj is ReadableStreamLike {\n // We don't want to use instanceof checks because they would return\n // false for instances from another Realm, like an