From 725202666f1bfa494b1f41fd68e1dab90c18e53b Mon Sep 17 00:00:00 2001 From: gurdeep330 Date: Thu, 8 Aug 2024 13:19:56 +0200 Subject: [PATCH 1/7] fix: #47 --- app/code/utils.py | 27 ++++----- ...6a0ba437d41a7c82c08a9636a4438c1b5031378.md | 2 +- ...acd117521ef5aafb09fed02ab415523b330b058.md | 4 +- ...d01d21137a5af9f04e4b16a55a0f732cb8a540b.md | 4 +- ...23acfbccca0460171b6b06a4012dbb991cde55b.md | 6 +- ...6f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md | 6 +- ...df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md | 6 +- ...79cd637b7e38bba1dd8915b5ce68cbcacecbe68.md | 56 +++++++++---------- ...b2aa13d4959073f61ad70555bc8c7da7d116196.md | 4 +- ...5e2571c17246577e0bc1b9de57a314c3b60e220.md | 6 +- ...c9961153493370500020c81527b3548c96f81e0.md | 4 +- ...df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md | 40 +++++-------- ...55bfc515eb279cc09023faa1f78c6efb61224ba.md | 4 +- ...971f9abd024e40fbbdff2e9492745b68a6bca01.md | 4 +- ...a111f7a3b56d0468f13104999844885157ef17d.md | 30 +++++----- ...bd2c0acaf58c25f71617db2396188c74d29bf14.md | 4 +- ...d150cec2775f9bc863760448f14104cc8f42368.md | 2 +- ...0d0d998fa038182b3b69a57adb9b2f82d40589c.md | 27 +++++---- ...48d90b713997a771e2c49f02cd771e8b7b10b37.md | 4 +- ...3dd9c49f205280991826b2ea4b50344203916b4.md | 26 ++++----- ...83547fdbd88552328a6615ec620f96e39c57018.md | 4 +- ...2eb064f432557c59ce99834d7dc7817e4687271.md | 6 +- ...0fc3882a9976f6a9cdc3a724bce184b786503da.md | 2 +- ...3c94ccc094dcf546e8e31c9a42506302e837524.md | 4 +- ...cea298edb788edf821aef58f0952c3e8debc25a.md | 6 +- ...3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md | 4 +- ...2a83369383aff37224170c1ae3d3870d5d9e419.md | 6 +- ...2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md | 4 +- ...6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md | 8 +-- ...45f85fa1beaa795c24c4ff86f1f2deece72252f.md | 4 +- ...f1f1cf9df8c413ec7345da7604ba28597da5b90.md | 2 +- 31 files changed, 148 insertions(+), 168 deletions(-) diff --git a/app/code/utils.py b/app/code/utils.py index b5bc586a..1e53953e 100755 --- a/app/code/utils.py +++ b/app/code/utils.py @@ -15,29 +15,22 @@ FIELDS += 'publicationTypes,publicationDate,citationCount,' FIELDS += 'publicationVenue,externalIds,abstract' -def add_negative_articles(topic_obj, dic, max_num_articles=10): +def add_negative_articles(topic_obj, dic): """ Add the negative articles to the topic object """ if 'negative' not in topic_obj.paper_ids: topic_obj.paper_ids['negative'] = {} - num_topics = len(dic) - 1 - while len(topic_obj.paper_ids["negative"]) < max_num_articles: - for topic in dic: - if topic == topic_obj.topic: + for topic in dic: + # Skip the current topic + if topic == topic_obj.topic: + continue + # Add the articles from the other topics + # as negative articles to the current topic + for paper_id in dic[topic].paper_ids['positive']: + if paper_id in topic_obj.paper_ids['negative']: continue - articles_per_topic = max_num_articles // num_topics - for paper_id in dic[topic].paper_ids['positive']: - if paper_id in topic_obj.paper_ids['negative']: - continue - topic_obj.paper_ids['negative'][paper_id]=dic[topic].paper_ids['positive'][paper_id] - articles_per_topic -= 1 - if articles_per_topic == 0: - break - if len(topic_obj.paper_ids["negative"]) == max_num_articles: - break - if len(topic_obj.paper_ids["negative"]) == max_num_articles: - break + topic_obj.paper_ids['negative'][paper_id]=dic[topic].paper_ids['positive'][paper_id] print (f'Added {len(topic_obj.paper_ids["negative"])} negative articles for {topic_obj.topic}.') def update_paper_details(topic_obj): diff --git a/docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md b/docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md index 37319a7d..2373fca1 100644 --- a/docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md +++ b/docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:07 UTC + This page was last updated on 2024-08-08 13:17:20 UTC

diff --git a/docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md b/docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md index 27c6a07a..51c0d3d7 100644 --- a/docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md +++ b/docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:11 UTC + This page was last updated on 2024-08-08 13:17:27 UTC

@@ -74,7 +74,7 @@ hide: 2015-09-11 Proceedings of the National Academy of Sciences - 3159 + 3168 63 diff --git a/docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md b/docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md index d7d81558..2a769002 100644 --- a/docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md +++ b/docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:44 UTC + This page was last updated on 2024-08-08 13:16:41 UTC

@@ -109,7 +109,7 @@ hide: Hongyuan Yu, Ting Li, Weichen Yu, Jianguo Li, Yan Huang, Liang Wang, A. Liu 2022-07-01 - DBLP, ArXiv + ArXiv, DBLP 37 33 diff --git a/docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md b/docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md index f90d56f3..4a831c24 100644 --- a/docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md +++ b/docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:46 UTC + This page was last updated on 2024-08-08 13:16:44 UTC

@@ -122,7 +122,7 @@ hide: 2023-10-03 ArXiv - 109 + 111 9 @@ -146,7 +146,7 @@ hide: 2023-06-19 ArXiv - 32 + 34 8 diff --git a/docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md b/docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md index f98dccec..b4dbc7cb 100644 --- a/docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md +++ b/docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:49 UTC + This page was last updated on 2024-08-08 13:16:50 UTC

@@ -74,7 +74,7 @@ hide: 2022-09-20 IEEE Transactions on Knowledge and Data Engineering - 55 + 56 17 @@ -146,7 +146,7 @@ hide: 2023-10-14 ArXiv - 44 + 45 14 diff --git a/docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md b/docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md index 041defa1..7c28247c 100644 --- a/docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md +++ b/docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:47 UTC + This page was last updated on 2024-08-08 13:16:45 UTC

@@ -86,7 +86,7 @@ hide: 2024-06-09 ArXiv - 0 + 1 2 @@ -122,7 +122,7 @@ hide: 2022-10-08 ArXiv - 56 + 57 17 diff --git a/docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md b/docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md index 27c1d303..69be0b1b 100644 --- a/docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md +++ b/docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:53 UTC + This page was last updated on 2024-08-08 13:16:58 UTC

@@ -49,7 +49,7 @@ hide: Andreas Doerr, Christian Daniel, Martin Schiegg, D. Nguyen-Tuong, S. Schaal, Marc Toussaint, Sebastian Trimpe 2018-01-31 - DBLP, ArXiv, MAG + MAG, ArXiv, DBLP 110 93 @@ -90,30 +90,6 @@ hide: 49 - - visibility_off - Relational State-Space Model for Stochastic Multi-Object Systems - - Fan Yang, Ling Chen, Fan Zhou, Yusong Gao, Wei Cao - - 2020-01-13 - ArXiv - 8 - 56 - - - - visibility_off - State Space Models on Temporal Graphs: A First-Principles Study - - Jintang Li, Ruofan Wu, Xinzhou Jin, Boqun Ma, Liang Chen, Zibin Zheng - - 2024-06-03 - ArXiv - 0 - 10 - - visibility_off Effectively Modeling Time Series with Simple Discrete State Spaces @@ -137,11 +113,35 @@ hide: R. G. Krishnan, Uri Shalit, D. Sontag 2016-09-30 - DBLP, ArXiv, MAG - 424 + MAG, ArXiv, DBLP + 427 48 + + visibility_off + Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems + + Fiona Lippert, B. Kranstauber, E. E. V. Loon, Patrick Forr'e + + 2023-06-14 + ArXiv + 1 + 23 + + + + visibility_off + SrVARM: State Regularized Vector Autoregressive Model for Joint Learning of Hidden State Transitions and State-Dependent Inter-Variable Dependencies from Multi-variate Time Series + + Tsung-Yu Hsieh, Yiwei Sun, Xianfeng Tang, Suhang Wang, Vasant G Honavar + + 2021-04-19 + Proceedings of the Web Conference 2021 + 8 + 54 + + diff --git a/docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md b/docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md index 5b9e771e..0787df0a 100644 --- a/docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md +++ b/docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:08 UTC + This page was last updated on 2024-08-08 13:17:23 UTC

@@ -122,7 +122,7 @@ hide: 2020-07-02 ArXiv - 126 + 127 22 diff --git a/docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md b/docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md index 57114c6c..65c5db8c 100644 --- a/docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md +++ b/docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:10 UTC + This page was last updated on 2024-08-08 13:17:26 UTC

@@ -109,7 +109,7 @@ hide: Philipp Holl, V. Koltun, Nils Thuerey 2021-09-30 - DBLP, ArXiv + ArXiv, DBLP 5 103 @@ -134,7 +134,7 @@ hide: 2021-05-06 Physical review letters - 81 + 82 81 diff --git a/docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md b/docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md index a31e229c..4d703246 100644 --- a/docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md +++ b/docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:04 UTC + This page was last updated on 2024-08-08 13:17:15 UTC

@@ -50,7 +50,7 @@ hide: 2015-09-11 Proceedings of the National Academy of Sciences - 3159 + 3168 63 diff --git a/docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md b/docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md index ec67fd55..2edff6bc 100644 --- a/docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md +++ b/docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:05 UTC + This page was last updated on 2024-08-08 13:17:17 UTC

@@ -74,7 +74,7 @@ hide: 2022-01-13 Proceedings of the Royal Society A - 67 + 68 63 @@ -102,6 +102,18 @@ hide: 78 + + visibility_off + Detecting chaos in lineage-trees: A deep learning approach + + H. Rappeport, Irit Levin Reisman, Naftali Tishby, N. Balaban + + 2021-06-08 + ArXiv + 2 + 56 + + visibility_off Cluster-based network modeling—From snapshots to complex dynamical systems @@ -126,30 +138,6 @@ hide: 49 - - visibility_off - Generalized Teacher Forcing for Learning Chaotic Dynamics - - F. Hess, Z. Monfared, Manuela Brenner, D. Durstewitz - - 2023-06-07 - DBLP, ArXiv - 15 - 36 - - - - visibility_off - Automatic recognition and tagging of topologically different regimes in dynamical systems - - Jesse Berwald, M. Gidea, Mikael Vejdemo-Johansson - - 2013-12-09 - ArXiv - 34 - 22 - - diff --git a/docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md b/docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md index 9ddec945..d8311235 100644 --- a/docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md +++ b/docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:42 UTC + This page was last updated on 2024-08-08 13:16:38 UTC

@@ -121,7 +121,7 @@ hide: Steven Cheng-Xian Li, Benjamin M Marlin 2020-07-12 - DBLP, ArXiv, MAG + MAG, ArXiv, DBLP 47 32 diff --git a/docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md b/docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md index 45a8af01..010a684c 100644 --- a/docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md +++ b/docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:07 UTC + This page was last updated on 2024-08-08 13:17:21 UTC

@@ -74,7 +74,7 @@ hide: 2021-11-12 J. Open Source Softw. - 108 + 109 63 diff --git a/docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md b/docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md index 6e1446b4..f7c67325 100644 --- a/docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md +++ b/docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:48 UTC + This page was last updated on 2024-08-08 13:16:48 UTC

@@ -74,10 +74,22 @@ hide: 2022-11-27 ArXiv - 469 + 479 34 + + visibility_off + HiMTM: Hierarchical Multi-Scale Masked Time Series Modeling with Self-Distillation for Long-Term Forecasting + + Shubao Zhao, Ming Jin, Zhaoxiang Hou, Che-Sheng Yang, Zengxiang Li, Qingsong Wen, Yi Wang + + 2024-01-10 + ArXiv + 0 + 5 + + visibility_off Two Steps Forward and One Behind: Rethinking Time Series Forecasting with Deep Learning @@ -85,7 +97,7 @@ hide: Riccardo Ughi, Eugenio Lomurno, Matteo Matteucci 2023-04-10 - DBLP, ArXiv + ArXiv, DBLP 1 5 @@ -114,18 +126,6 @@ hide: 2 - - visibility_off - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System - - Mingjie Li, Xiaoyun Zhao, R. Liu, Changlin Li, Xiaohan Wang, Xiaojun Chang - - 2022-07-16 - ArXiv - 1 - 78 - - diff --git a/docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md b/docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md index d72270f7..cf55310e 100644 --- a/docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md +++ b/docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:52 UTC + This page was last updated on 2024-08-08 13:16:55 UTC

@@ -85,7 +85,7 @@ hide: Xiaoyong Jin, Youngsuk Park, Danielle C. Maddix, Bernie Wang, Xifeng Yan 2021-02-13 - DBLP, ArXiv + ArXiv, DBLP 56 65 diff --git a/docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md b/docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md index 01b5dd94..c41737b5 100644 --- a/docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md +++ b/docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:02 UTC + This page was last updated on 2024-08-08 13:17:12 UTC

diff --git a/docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md b/docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md index 2b5a37af..092a1d5b 100644 --- a/docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md +++ b/docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:03 UTC + This page was last updated on 2024-08-08 13:17:14 UTC

@@ -114,6 +114,18 @@ hide: 72 + + visibility_off + Physics-informed deep-learning applications to experimental fluid mechanics + + Hamidreza Eivazi, Yuning Wang, R. Vinuesa + + 2022-03-29 + Measurement Science and Technology + 21 + 38 + + visibility_off A physics-informed operator regression framework for extracting data-driven continuum models @@ -138,19 +150,6 @@ hide: 47 - - visibility_off - Universal Differential Equations for Scientific Machine Learning - - Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, K. Zubov, R. Supekar, Dominic J. Skinner, A. Ramadhan - - 2020-01-13 - ArXiv - 483 - 25 - - diff --git a/docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md b/docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md index 9e9019b8..41bca1bc 100644 --- a/docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md +++ b/docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:51 UTC + This page was last updated on 2024-08-08 13:16:54 UTC

@@ -145,7 +145,7 @@ hide: Konstantinos Kallidromitis, Denis A. Gudovskiy, Kozuka Kazuki, Ohama Iku, Luca Rigazio 2021-10-24 - DBLP, ArXiv + ArXiv, DBLP 10 13 diff --git a/docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md b/docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md index ea89564d..4ed6398c 100644 --- a/docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md +++ b/docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:09 UTC + This page was last updated on 2024-08-08 13:17:24 UTC

@@ -102,6 +102,18 @@ hide: 5 + + visibility_off + Sparse identification of nonlinear dynamics for model predictive control in the low-data limit + + E. Kaiser, J. Kutz, S. Brunton + + 2017-11-15 + Proceedings. Mathematical, Physical, and Engineering Sciences + 425 + 63 + + visibility_off Data-based modeling and control of nonlinear process systems using sparse identification: An overview of recent results @@ -138,18 +150,6 @@ hide: 36 - - visibility_off - Discrepancy Modeling Framework: Learning Missing Physics, Modeling Systematic Residuals, and Disambiguating between Deterministic and Random Effects - - Megan R. Ebers, K. Steele, J. Kutz - - 2022-03-10 - SIAM J. Appl. Dyn. Syst. - 5 - 31 - - diff --git a/docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md b/docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md index 7992783d..db4e5dc3 100644 --- a/docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md +++ b/docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:11 UTC + This page was last updated on 2024-08-08 13:17:29 UTC

@@ -110,7 +110,7 @@ hide: 2015-09-11 Proceedings of the National Academy of Sciences - 3159 + 3168 63 diff --git a/docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md b/docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md index e9e624c3..2af11485 100644 --- a/docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md +++ b/docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:06 UTC + This page was last updated on 2024-08-08 13:17:18 UTC

@@ -122,7 +122,7 @@ hide: 2015-09-11 Proceedings of the National Academy of Sciences - 3159 + 3168 63 @@ -134,7 +134,7 @@ hide: 2021-11-12 J. Open Source Softw. - 108 + 109 63 diff --git a/docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md b/docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md index 61727cc7..e8ef3be1 100644 --- a/docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md +++ b/docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:13 UTC + This page was last updated on 2024-08-08 13:17:32 UTC

diff --git a/docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md b/docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md index df517f26..bc795129 100644 --- a/docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md +++ b/docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:53 UTC + This page was last updated on 2024-08-08 13:16:57 UTC

@@ -62,7 +62,7 @@ hide: 2023-07-07 ArXiv - 59 + 61 49 diff --git a/docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md b/docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md index 9b3fe348..77d69946 100644 --- a/docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md +++ b/docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:45 UTC + This page was last updated on 2024-08-08 13:16:42 UTC

@@ -98,7 +98,7 @@ hide: 2020-05-24 Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining - 934 + 938 54 @@ -122,7 +122,7 @@ hide: 2023-11-10 ArXiv - 24 + 25 4 diff --git a/docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md b/docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md index adb46d95..65de8c14 100644 --- a/docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md +++ b/docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:41 UTC + This page was last updated on 2024-08-08 13:16:36 UTC

@@ -98,7 +98,7 @@ hide: 2023-11-10 ArXiv - 24 + 25 4 diff --git a/docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md b/docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md index 13c101b9..79cda625 100644 --- a/docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md +++ b/docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:43 UTC + This page was last updated on 2024-08-08 13:16:39 UTC

@@ -62,7 +62,7 @@ hide: 2022-09-14 ArXiv - 27 + 28 49 @@ -110,7 +110,7 @@ hide: 2023-11-10 ArXiv - 24 + 25 4 diff --git a/docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md b/docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md index 06b1db68..31769f01 100644 --- a/docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md +++ b/docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:50 UTC + This page was last updated on 2024-08-08 13:16:52 UTC

@@ -58,7 +58,7 @@ hide: visibility_off Generative Pre-Trained Diffusion Paradigm for Zero-Shot Time Series Forecasting - Jiarui Yang, Tao Dai, Naiqi Li, Junxi Wu, Peiyuan Liu, Jinmin Li, Jigang Bao, Haigang Zhang, Shutao Xia + Jiarui Yang, Tao Dai, Naiqi Li, Junxi Wu, Peiyuan Liu, Jinmin Li, Jigang Bao, Haigang Zhang, Shu-Tao Xia 2024-06-04 ArXiv diff --git a/docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md b/docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md index c7641424..a16e4992 100644 --- a/docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md +++ b/docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 09:00:12 UTC + This page was last updated on 2024-08-08 13:17:30 UTC

@@ -62,7 +62,7 @@ hide: 2015-09-11 Proceedings of the National Academy of Sciences - 3159 + 3168 63 @@ -86,7 +86,7 @@ hide: 2021-11-12 J. Open Source Softw. - 108 + 109 63 @@ -158,7 +158,7 @@ hide: 2017-12-06 The Journal of chemical physics - 189 + 190 44 diff --git a/docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md b/docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md index 863ce75b..b087071c 100644 --- a/docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md +++ b/docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:48 UTC + This page was last updated on 2024-08-08 13:16:47 UTC

@@ -74,7 +74,7 @@ hide: 2023-10-03 ArXiv - 109 + 111 9 diff --git a/docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md b/docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md index 62c1e455..692e6334 100644 --- a/docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md +++ b/docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md @@ -11,7 +11,7 @@ hide:

- This page was last updated on 2024-08-05 08:59:54 UTC + This page was last updated on 2024-08-08 13:17:00 UTC

From eef588c0e8786e41456d9e1635e0ef1808b845c9 Mon Sep 17 00:00:00 2001 From: gurdeep330 Date: Thu, 8 Aug 2024 13:41:42 +0200 Subject: [PATCH 2/7] feat: do not consider an article negative if it is already positive for a topic --- app/code/utils.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/app/code/utils.py b/app/code/utils.py index 1e53953e..2c13da1e 100755 --- a/app/code/utils.py +++ b/app/code/utils.py @@ -28,8 +28,12 @@ def add_negative_articles(topic_obj, dic): # Add the articles from the other topics # as negative articles to the current topic for paper_id in dic[topic].paper_ids['positive']: + # Skip if the article is already in the negative articles if paper_id in topic_obj.paper_ids['negative']: continue + # Skip if the article is already in the positive articles + if paper_id in topic_obj.paper_ids['positive']: + continue topic_obj.paper_ids['negative'][paper_id]=dic[topic].paper_ids['positive'][paper_id] print (f'Added {len(topic_obj.paper_ids["negative"])} negative articles for {topic_obj.topic}.') From 1a4d499658d956fedc6d737233d41ec46122b041 Mon Sep 17 00:00:00 2001 From: Gurdeep Singh <43615259+gurdeep330@users.noreply.github.com> Date: Fri, 23 Aug 2024 17:06:15 +0200 Subject: [PATCH 3/7] Feat/write recommended articles (#51) * update data * update data * feat: add Zotero plugin * chore: update README explaining the Zotero plugin * chore: utils.py and reduce the number of articles to 200 --------- Co-authored-by: GitHub Action --- README.md | 12 +- .../literature_fetch_recommendation_api.py | 4 +- app/code/utils.py | 60 +- ...6a0ba437d41a7c82c08a9636a4438c1b5031378.md | 249 -- ...acd117521ef5aafb09fed02ab415523b330b058.md | 249 -- ...ce6f9c3d9dccdc5f7567646be7a7d4c6415576b.md | 273 -- ...d01d21137a5af9f04e4b16a55a0f732cb8a540b.md | 249 -- ...1df7f23f72703ceefccc6367a6a18719850c53e.md | 273 -- ...23acfbccca0460171b6b06a4012dbb991cde55b.md | 261 -- ...6f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md | 273 -- ...df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md | 249 -- ...232751169e57a14723bfffb4ab26aa0e0e3839a.md | 237 -- ...3c7b93a379c26c3738921282771e1a545538703.md | 249 -- ...5903eabbb1830aefa82048212e643eec660de0b.md | 261 -- ...79cd637b7e38bba1dd8915b5ce68cbcacecbe68.md | 253 -- ...b2aa13d4959073f61ad70555bc8c7da7d116196.md | 273 -- ...c9be1e38f978f43427ea5293b3138e0c4fede71.md | 261 -- ...d3000d245988a02d3c1060211e9d89c67147b49.md | 261 -- ...e7163e31e9b32cec11005678bae9e1dbeb6d573.md | 273 -- ...09c5ae93a4cabfd37747abd130866240e265b2d.md | 273 -- ...3da5e93b3c9c02256c6a98f8a843ae62e27d436.md | 273 -- ...5e2571c17246577e0bc1b9de57a314c3b60e220.md | 273 -- ...a58efcc4558727cc5c131c44923635da4524f33.md | 225 -- ...c9961153493370500020c81527b3548c96f81e0.md | 273 -- ...df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md | 249 -- ...3879cf527f4918955fd55128baa6745174d8555.md | 262 -- ...49310e3538b08b43227d660227dfd2875c3c3c1.md | 261 -- ...55bfc515eb279cc09023faa1f78c6efb61224ba.md | 261 -- ...971f9abd024e40fbbdff2e9492745b68a6bca01.md | 273 -- ...a111f7a3b56d0468f13104999844885157ef17d.md | 237 -- ...e837965494c4edbec4d30832d31ba5639996da8.md | 261 -- ...fd23f18cfb2105ccadda5a51fed13063d611fff.md | 249 -- ...3c9f3c34d8481adaf24df3b25581ccf1bc53f5c.md | 262 -- ...8912e2c2aaa77d1448d51e9d9460e06a5b924b9.md | 273 -- ...bd2c0acaf58c25f71617db2396188c74d29bf14.md | 225 -- ...d150cec2775f9bc863760448f14104cc8f42368.md | 261 -- ...0d0d998fa038182b3b69a57adb9b2f82d40589c.md | 261 -- ...43ac3ef063c77eb02a3d52637c11fe028bfae28.md | 249 -- ...48d90b713997a771e2c49f02cd771e8b7b10b37.md | 273 -- ...8b6ca45a588d538b36335b23f6969c960cf2e6e.md | 261 -- ...8d54a4ef82873fd3a0e857ad2c136d65fa17db8.md | 273 -- ...adeda1af8abc6bc3c17c0b39f635a845476cd9f.md | 261 -- ...bd28606fbae3449f831248804264c9885e992f9.md | 282 -- ...3dd9c49f205280991826b2ea4b50344203916b4.md | 261 -- ...0744010d90c8ede052c7ac6ba8c38c9de959c6e.md | 273 -- ...540780e6b9422f7a1264edb70f39d3ff79bb8c1.md | 249 -- ...83547fdbd88552328a6615ec620f96e39c57018.md | 249 -- ...93768d957f8a46f0ba5bab11e5f2e2698ef1409.md | 273 -- ...0cc86274f947b15ec3cc8c1dcfe1fc8db608e03.md | 262 -- ...5eee51c1cb1771e96cd182f47c90a7877461530.md | 249 -- ...79c112d5ed2f7653990a3591cdfccfad0dc27fd.md | 249 -- ...e20f6874feaaf7c9994f9875b1d9cab17a2fd59.md | 261 -- ...3c279828af3621d2c16ac26e5900b970383f60e.md | 273 -- ...41fe2302296a9d1eabc382415d4049905fddb36.md | 273 -- ...50a2a191c98dfe045ac2139495ee80ff1338e47.md | 273 -- ...af2145f9998f304513c0c9b530ee9f7750c6f55.md | 273 -- ...cc257947545c8daa968138e317e03edc90e79b0.md | 273 -- ...e42c0cff384495683192b06bd985cdd7a54632a.md | 261 -- ...f84c6db6b5c41ca628867ff4a27566e9ca3c69e.md | 261 -- ...2eb064f432557c59ce99834d7dc7817e4687271.md | 273 -- ...8db0d2a39ca356abe63a8eabbc5ed9c868f5907.md | 261 -- ...921efbb226fe2618ec160563a2bcb5999c7c28f.md | 249 -- ...cbcc2e1af8bcf6b07edf866be95116a8ed0bf91.md | 273 -- ...e8d39424a9010bfc0805385cc91edee383c2e24.md | 273 -- ...f657b5049c1a5c839369d3948ffb4c0584cd1d2.md | 153 - ...0fc3882a9976f6a9cdc3a724bce184b786503da.md | 263 -- ...3c94ccc094dcf546e8e31c9a42506302e837524.md | 249 -- ...529f5b08675f787cdcc094ee495239592339f82.md | 273 -- ...cea298edb788edf821aef58f0952c3e8debc25a.md | 237 -- ...39ad86d4617e069d89b6d62c760c2ba268a2b85.md | 273 -- ...3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md | 273 -- ...6fdd8fc0c5fc052d040687e72638fb4297661cc.md | 261 -- ...8d8e2c04ca47bd628bd2a499e03ad7cd29633da.md | 273 -- ...0ee02a573b3d83fec55ed5d7c80f1afa055a7b4.md | 261 -- ...2a83369383aff37224170c1ae3d3870d5d9e419.md | 225 -- ...2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md | 261 -- ...6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md | 273 -- ...45f85fa1beaa795c24c4ff86f1f2deece72252f.md | 261 -- ...a352e8e4d9ec2f4b66965dd9cea75167950152a.md | 249 -- ...f1f1cf9df8c413ec7345da7604ba28597da5b90.md | 261 -- requirements.txt | 2 + site/Symbolic regression/index.html | 3112 +++++++-------- site/Time-series forecasting/index.html | 3363 ++++++++--------- .../index.html | 12 +- .../index.html | 12 +- .../index.html | 14 +- .../index.html | 16 +- .../index.html | 8 +- .../index.html | 18 +- .../index.html | 18 +- .../index.html | 8 +- .../index.html | 16 +- .../index.html | 8 +- .../index.html | 54 +- .../index.html | 12 +- .../index.html | 14 +- .../index.html | 38 +- .../index.html | 6 +- .../index.html | 14 +- .../index.html | 35 +- .../index.html | 16 +- .../index.html | 32 +- .../index.html | 18 +- .../index.html | 28 +- .../index.html | 14 +- .../index.html | 18 +- .../index.html | 12 +- .../index.html | 14 +- .../index.html | 14 +- .../index.html | 12 +- .../index.html | 32 +- .../index.html | 6 +- .../index.html | 14 +- site/search/search_index.json | 2 +- site/sitemap.xml.gz | Bin 127 -> 127 bytes 115 files changed, 3474 insertions(+), 23597 deletions(-) delete mode 100644 docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md delete mode 100644 docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md delete mode 100644 docs/recommendations/0ce6f9c3d9dccdc5f7567646be7a7d4c6415576b.md delete mode 100644 docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md delete mode 100644 docs/recommendations/11df7f23f72703ceefccc6367a6a18719850c53e.md delete mode 100644 docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md delete mode 100644 docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md delete mode 100644 docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md delete mode 100644 docs/recommendations/2232751169e57a14723bfffb4ab26aa0e0e3839a.md delete mode 100644 docs/recommendations/23c7b93a379c26c3738921282771e1a545538703.md delete mode 100644 docs/recommendations/25903eabbb1830aefa82048212e643eec660de0b.md delete mode 100644 docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md delete mode 100644 docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md delete mode 100644 docs/recommendations/2c9be1e38f978f43427ea5293b3138e0c4fede71.md delete mode 100644 docs/recommendations/2d3000d245988a02d3c1060211e9d89c67147b49.md delete mode 100644 docs/recommendations/2e7163e31e9b32cec11005678bae9e1dbeb6d573.md delete mode 100644 docs/recommendations/309c5ae93a4cabfd37747abd130866240e265b2d.md delete mode 100644 docs/recommendations/33da5e93b3c9c02256c6a98f8a843ae62e27d436.md delete mode 100644 docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md delete mode 100644 docs/recommendations/3a58efcc4558727cc5c131c44923635da4524f33.md delete mode 100644 docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md delete mode 100644 docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md delete mode 100644 docs/recommendations/43879cf527f4918955fd55128baa6745174d8555.md delete mode 100644 docs/recommendations/449310e3538b08b43227d660227dfd2875c3c3c1.md delete mode 100644 docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md delete mode 100644 docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md delete mode 100644 docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md delete mode 100644 docs/recommendations/4e837965494c4edbec4d30832d31ba5639996da8.md delete mode 100644 docs/recommendations/4fd23f18cfb2105ccadda5a51fed13063d611fff.md delete mode 100644 docs/recommendations/53c9f3c34d8481adaf24df3b25581ccf1bc53f5c.md delete mode 100644 docs/recommendations/58912e2c2aaa77d1448d51e9d9460e06a5b924b9.md delete mode 100644 docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md delete mode 100644 docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md delete mode 100644 docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md delete mode 100644 docs/recommendations/643ac3ef063c77eb02a3d52637c11fe028bfae28.md delete mode 100644 docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md delete mode 100644 docs/recommendations/68b6ca45a588d538b36335b23f6969c960cf2e6e.md delete mode 100644 docs/recommendations/68d54a4ef82873fd3a0e857ad2c136d65fa17db8.md delete mode 100644 docs/recommendations/6adeda1af8abc6bc3c17c0b39f635a845476cd9f.md delete mode 100644 docs/recommendations/6bd28606fbae3449f831248804264c9885e992f9.md delete mode 100644 docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md delete mode 100644 docs/recommendations/80744010d90c8ede052c7ac6ba8c38c9de959c6e.md delete mode 100644 docs/recommendations/8540780e6b9422f7a1264edb70f39d3ff79bb8c1.md delete mode 100644 docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md delete mode 100644 docs/recommendations/893768d957f8a46f0ba5bab11e5f2e2698ef1409.md delete mode 100644 docs/recommendations/90cc86274f947b15ec3cc8c1dcfe1fc8db608e03.md delete mode 100644 docs/recommendations/95eee51c1cb1771e96cd182f47c90a7877461530.md delete mode 100644 docs/recommendations/979c112d5ed2f7653990a3591cdfccfad0dc27fd.md delete mode 100644 docs/recommendations/9e20f6874feaaf7c9994f9875b1d9cab17a2fd59.md delete mode 100644 docs/recommendations/a3c279828af3621d2c16ac26e5900b970383f60e.md delete mode 100644 docs/recommendations/a41fe2302296a9d1eabc382415d4049905fddb36.md delete mode 100644 docs/recommendations/a50a2a191c98dfe045ac2139495ee80ff1338e47.md delete mode 100644 docs/recommendations/aaf2145f9998f304513c0c9b530ee9f7750c6f55.md delete mode 100644 docs/recommendations/acc257947545c8daa968138e317e03edc90e79b0.md delete mode 100644 docs/recommendations/ae42c0cff384495683192b06bd985cdd7a54632a.md delete mode 100644 docs/recommendations/af84c6db6b5c41ca628867ff4a27566e9ca3c69e.md delete mode 100644 docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md delete mode 100644 docs/recommendations/b8db0d2a39ca356abe63a8eabbc5ed9c868f5907.md delete mode 100644 docs/recommendations/b921efbb226fe2618ec160563a2bcb5999c7c28f.md delete mode 100644 docs/recommendations/bcbcc2e1af8bcf6b07edf866be95116a8ed0bf91.md delete mode 100644 docs/recommendations/be8d39424a9010bfc0805385cc91edee383c2e24.md delete mode 100644 docs/recommendations/bf657b5049c1a5c839369d3948ffb4c0584cd1d2.md delete mode 100644 docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md delete mode 100644 docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md delete mode 100644 docs/recommendations/c529f5b08675f787cdcc094ee495239592339f82.md delete mode 100644 docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md delete mode 100644 docs/recommendations/d39ad86d4617e069d89b6d62c760c2ba268a2b85.md delete mode 100644 docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md delete mode 100644 docs/recommendations/d6fdd8fc0c5fc052d040687e72638fb4297661cc.md delete mode 100644 docs/recommendations/d8d8e2c04ca47bd628bd2a499e03ad7cd29633da.md delete mode 100644 docs/recommendations/e0ee02a573b3d83fec55ed5d7c80f1afa055a7b4.md delete mode 100644 docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md delete mode 100644 docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md delete mode 100644 docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md delete mode 100644 docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md delete mode 100644 docs/recommendations/fa352e8e4d9ec2f4b66965dd9cea75167950152a.md delete mode 100644 docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md diff --git a/README.md b/README.md index 8d2a0aeb..49c8c698 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@

🚀 Literature Survey

-Welcome to Team VPE's Literature Survey Template Repository! 📚✨ This repository provides you with a quick setup to create your very own automated literature survey website using Semantic Scholar's [Recommendation API](https://api.semanticscholar.org/api-docs/recommendations). +Welcome to Team VPE's Literature Survey Template Repository! 📚✨ This repository provides you with a quick setup to create your very own automated literature survey website using Semantic Scholar's [Recommendation API](https://api.semanticscholar.org/api-docs/recommendations), and provides an option to import the recommended articles to your [Zotero](https://www.zotero.org/) account. ### Types of Recommendations Semantic Scholar provides 2 types of recommendations: @@ -66,6 +66,16 @@ Head over to the localhost link that pops up in your terminal. 12. (Optional) Edit custom.css if you'd like to change the styling of web pages. +### Zotero Plugin +If you'd like to read the recommended articles in your Zotero Account: +1. Create an account with Zotero +2. Under the `Settings` tab in your GitHub repo, click on `Secrets and variables`, and select `Actions` +3. Set the following `Repository secrets`: + - `ZOTERO_API_KEY` as Zotero API key (you can get it [here](https://www.zotero.org/settings/keys/new)) + - `LIBRARY_ID` as your group ID (this can be found by opening the group's page: https://www.zotero.org/groups/groupname , and hovering over the group settings link. The ID is the integer after /groups/) + - `TEST_COLLECTION_KEY` as your collection's key (enter `https://api.zotero.org/groups//collections?key=` in your browser to view all the collections in your group; choose the key of the collection in which you'd like the recommended articles to be sotred) +4. The changes take effect only when the code is re-run. This can happen either the next time the code is scheduled for a run (Mondays) or under the `Actions` tab, select `mkdocs-deploy` from the left panel, and click on `Run workflow`. + ### Bugs? Feature Requests? If you encounter any bugs or have brilliant ideas for new features, please head over to the [Issues](https://github.com/VirtualPatientEngine/literatureSurvey/issues) and let us know. diff --git a/app/code/literature_fetch_recommendation_api.py b/app/code/literature_fetch_recommendation_api.py index d9b028a0..0073e5b1 100755 --- a/app/code/literature_fetch_recommendation_api.py +++ b/app/code/literature_fetch_recommendation_api.py @@ -179,7 +179,7 @@ def create_template(template, if len(topic_obj.paper_ids['positive']) == 0: print (f'No positive articles for {topic_obj.topic}. Skipping...') else: - search_response_json = utils.add_recommendations(topic_obj, limit=300) + search_response_json = utils.add_recommendations(topic_obj, limit=200) for paper_data in search_response_json['recommendedPapers']: paper_id = paper_data['paperId'] # skip the ones with publication date is null @@ -208,6 +208,8 @@ def create_template(template, for article_id, article_obj in topic_obj.paper_ids[article_type].items(): utils.update_h_index(article_obj, author_details) print (f'Fetched the details of the authors (n={len(author_details)}) for {topic}.') + # Add the recommended articles to Zotero + utils.add_recommended_articles_to_zotero(topic, topic_obj.paper_ids) # Create the markdown text markdown_text = create_template( ("../../templates", "topic.txt"), diff --git a/app/code/utils.py b/app/code/utils.py index 2c13da1e..13415124 100755 --- a/app/code/utils.py +++ b/app/code/utils.py @@ -4,17 +4,57 @@ script to define utility functions ''' +import os import sys import re import matplotlib.pyplot as plt import pandas as pd import yaml import requests +from pyzotero import zotero FIELDS = 'paperId,url,authors,journal,title,' FIELDS += 'publicationTypes,publicationDate,citationCount,' FIELDS += 'publicationVenue,externalIds,abstract' +LIBRARY_TYPE = 'group' +LIBRARY_ID = os.environ.get('LIBRARY_ID') +ZOTERO_API_KEY = os.environ.get('ZOTERO_API_KEY') +TEST_COLLECTION_KEY = os.environ.get('TEST_COLLECTION_KEY') + +def add_recommended_articles_to_zotero(topic_name, paper_ids): + """ + Add the recommended articles to zotero + """ + if LIBRARY_ID is None or ZOTERO_API_KEY is None or TEST_COLLECTION_KEY is None: + print ('Zotero credentials not found.') + else: + print ('Adding recommended articles to Zotero.') + # Create a zotero object + zot = zotero.Zotero(LIBRARY_ID, LIBRARY_TYPE, ZOTERO_API_KEY) + new_items = [] + for _, paper_obj in paper_ids['recommended'].items(): + # create a template for the paper + template = zot.item_template('journalArticle') + template['title'] = paper_obj.info.title + template['creators'] = [] + for author in paper_obj.authors: + template['creators'].append({'creatorType': 'author', + 'name': author.author_name}) + template['publicationTitle'] = paper_obj.info.journal + template['date'] = paper_obj.info.publication_date + template['abstractNote'] = paper_obj.info.abstract + template['url'] = paper_obj.info.url + # assign topic names as tags + template['tags'] = [{'tag': topic_name}] + # assign the paper to the collection + template['collections'] = [TEST_COLLECTION_KEY] + new_items.append(template) + # add all the items to zotero, only 50 items at a time + for i in range(0, len(new_items), 50): + zot.check_items(new_items[i:i+50]) + zot.create_items(new_items[i:i+50]) + def add_negative_articles(topic_obj, dic): """ Add the negative articles to the topic object @@ -25,15 +65,19 @@ def add_negative_articles(topic_obj, dic): # Skip the current topic if topic == topic_obj.topic: continue - # Add the articles from the other topics - # as negative articles to the current topic + # Add the negative articles to the topic object for paper_id in dic[topic].paper_ids['positive']: - # Skip if the article is already in the negative articles + # Skip if the paper id is already in the negative articles if paper_id in topic_obj.paper_ids['negative']: continue - # Skip if the article is already in the positive articles + # Skip if the paper id is already in the positive articles + # i.e. do not add the same paper id to both positive and negative articles if paper_id in topic_obj.paper_ids['positive']: continue + # Skip if the paper id if it is marked to be not used for recommendation + paper_obj = dic[topic].paper_ids['positive'][paper_id] + if paper_obj.use_for_recommendation is False: + continue topic_obj.paper_ids['negative'][paper_id]=dic[topic].paper_ids['positive'][paper_id] print (f'Added {len(topic_obj.paper_ids["negative"])} negative articles for {topic_obj.topic}.') @@ -175,18 +219,14 @@ def add_recommendations(topic_obj, params = {'fields': fields, 'limit': limit} # Select positive articles that have use_for_recommendation set to True positive_paper_ids = [] - count = 0 + # count = 0 for paper_id, paper_obj in topic_obj.paper_ids['positive'].items(): if paper_obj.use_for_recommendation is False: continue positive_paper_ids.append(paper_id) - count += 1 - if count == 10: - break json = { - # 'positivePaperIds': list(topic_obj.paper_ids['positive'].keys())[:10], 'positivePaperIds': positive_paper_ids, - 'negativePaperIds': list(topic_obj.paper_ids['negative'].keys())[:10], + 'negativePaperIds': list(topic_obj.paper_ids['negative'].keys()), } status_code = 0 while status_code not in [200, 400, 404]: diff --git a/docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md b/docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md deleted file mode 100644 index 2373fca1..00000000 --- a/docs/recommendations/06a0ba437d41a7c82c08a9636a4438c1b5031378.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:20 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDistilling identifiable and interpretable dynamic models from biological data - Gemma Massonis, A. F. Villaverde, J. Banga - 2023-03-15PLOS Computational Biology354
visibility_offCharacterization of Biologically Relevant Network Structures form Time-series Data - Z. Tuza, G. Stan - 2018-09-242018 IEEE Conference on Decision and Control (CDC)334
visibility_offReconstruction of arbitrary biochemical reaction networks: A compressive sensing approach - W. Pan, Ye Yuan, G. Stan - 2012-05-082012 IEEE 51st IEEE Conference on Decision and Control (CDC)3334
visibility_offInferring sparse networks for noisy transient processes - H. M. Tran, S. Bukkapatnam - 2016-02-26Scientific Reports634
visibility_offKoopman Operators for Generalized Persistence of Excitation Conditions for Nonlinear Systems - N. Boddupalli, A. Hasnain, S. Nandanoori, Enoch Yeung - 2019-06-252019 IEEE 58th Conference on Decision and Control (CDC)517
visibility_offLearning sparse nonlinear dynamics via mixed-integer optimization - D. Bertsimas, Wes Gurnee - 2022-06-01Nonlinear Dynamics2790
visibility_offInverse problems in systems biology - H. Engl, Christoph Flamm, P. Kügler, James Lu, S. Müller, P. Schuster - 2009-12-01Inverse Problems13648
visibility_offSet-base dynamical parameter estimation and model invalidation for biochemical reaction networks - Philipp Rumschinski, S. Borchers, S. Bosio, R. Weismantel, R. Findeisen - 2010-05-25BMC Systems Biology6747
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md b/docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md deleted file mode 100644 index 51c0d3d7..00000000 --- a/docs/recommendations/0acd117521ef5aafb09fed02ab415523b330b058.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:27 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Data-driven discovery of partial differential equations -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDiscovering governing equations from data by sparse identification of nonlinear dynamical systems - S. Brunton, J. Proctor, J. Kutz - 2015-09-11Proceedings of the National Academy of Sciences316863
visibility_offAutomatically discovering ordinary differential equations from data with sparse regression - Kevin Egan, Weizhen Li, Rui Carvalho - 2024-01-09Communications Physics71
visibility_offPhysics-informed learning of governing equations from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05Nature Communications23412
visibility_offSparsistent Model Discovery - Georges Tod, G. Both, R. Kusters - 2021-06-22ArXiv112
visibility_offSupplementary material from "Learning partial differential equations via data discovery and sparse optimization" - Hayden Schaeffer - 2017-01-16015
visibility_offData-Driven discovery of governing physical laws and their parametric dependencies in engineering, physics and biology - J. Kutz, Samuel H. Rudy, A. Alla, S. Brunton - 2017-12-012017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)1263
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/0ce6f9c3d9dccdc5f7567646be7a7d4c6415576b.md b/docs/recommendations/0ce6f9c3d9dccdc5f7567646be7a7d4c6415576b.md deleted file mode 100644 index 1537fabb..00000000 --- a/docs/recommendations/0ce6f9c3d9dccdc5f7567646be7a7d4c6415576b.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:14 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Deep learning models for global coordinate transformations that linearise PDEs -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offData-driven discovery of coordinates and governing equations - Kathleen P. Champion, Bethany Lusch, J. Kutz, S. Brunton - 2019-03-29Proceedings of the National Academy of Sciences of the United States of America58963
visibility_offLearning a reduced basis of dynamical systems using an autoencoder. - David Sondak, P. Protopapas - 2020-11-14Physical review. E233
visibility_offDeep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations - M. Raissi - 2018-01-20J. Mach. Learn. Res.65824
visibility_offA Novel Convolutional Neural Network Architecture with a Continuous Symmetry - Y. Liu, Han-Juan Shao, Bing Bai - 2023-08-03ArXiv, DBLP11
visibility_offLearning second order coupled differential equations that are subject to non-conservative forces - R. Müller, J. L. Janssen, J. Camacaro, C. Bessega - 2020-10-17ArXiv09
visibility_offPhase space learning with neural networks - Jaime Lopez Garcia, Ángel Rivero Jiménez - 2020-06-22ArXiv00
visibility_offA Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data - Elham Kiyani, K. Shukla, G. Karniadakis, M. Karttunen - 2023-05-18ArXiv10127
visibility_offSymmetry-regularized neural ordinary differential equations - Wenbo Hao - 2023-11-28ArXiv00
visibility_offVariational Autoencoders for Learning Nonlinear Dynamics of PDEs and Reductions - Ryan Lopez, P. Atzberger - 2020-12-07ArXiv1424
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md b/docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md deleted file mode 100644 index 2a769002..00000000 --- a/docs/recommendations/0d01d21137a5af9f04e4b16a55a0f732cb8a540b.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:41 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Sparse Graph Learning from Spatiotemporal Time Series -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSparsity exploitation via discovering graphical models in multi-variate time-series forecasting - Ngoc-Dung Do, T. Hy, D. Nguyen - 2023-06-29ArXiv07
visibility_offTimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting - Nancy R. Xu, Chrysoula Kosma, M. Vazirgiannis - 2023-07-27ArXiv054
visibility_offBalanced Graph Structure Learning for Multivariate Time Series Forecasting - Weijun Chen, Yanze Wang, Chengshuo Du, Zhenglong Jia, Feng Liu, Ran Chen - 2022-01-24ArXiv010
visibility_offA Study of Joint Graph Inference and Forecasting - Daniel Zügner, François-Xavier Aubet, Victor Garcia Satorras, Tim Januschowski, Stephan Günnemann, Jan Gasthaus - 2021-09-10ArXiv1245
visibility_offRegularized Graph Structure Learning with Semantic Knowledge for Multi-variates Time-Series Forecasting - Hongyuan Yu, Ting Li, Weichen Yu, Jianguo Li, Yan Huang, Liang Wang, A. Liu - 2022-07-01ArXiv, DBLP3733
visibility_offDiscrete Graph Structure Learning for Forecasting Multiple Time Series - Chao Shang, Jie Chen, J. Bi - 2021-01-18ArXiv17436
visibility_offLearning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting - Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodríguez, Chao Zhang, B. A. Prakash - 2024-07-02ArXiv09
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/11df7f23f72703ceefccc6367a6a18719850c53e.md b/docs/recommendations/11df7f23f72703ceefccc6367a6a18719850c53e.md deleted file mode 100644 index d11de8f5..00000000 --- a/docs/recommendations/11df7f23f72703ceefccc6367a6a18719850c53e.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:15 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDeep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties - Alex Troy Mallen, Henning Lange, J. Kutz - 2021-06-10ArXiv631
visibility_offTemporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems - I. Nayak, Debdipta Goswami, Mrinal Kumar, Fernando L. Teixeira - 2024-03-19ArXiv08
visibility_offPredictive Nonlinear Modeling by Koopman Mode Decomposition - Akira Kusaba, Kilho Shin, D. Shepard, T. Kuboyama - 2020-11-012020 International Conference on Data Mining Workshops (ICDMW)013
visibility_offKoopman Operator Framework for Time Series Modeling and Analysis - A. Surana - 2018-01-09Journal of Nonlinear Science3524
visibility_offKoopman Operator Framework for Time Series Modeling and Analysis - A. Surana - 2018-01-09Journal of Nonlinear Science3524
visibility_offModeling Nonlinear Dynamics in Continuous Time with Inductive Biases on Decay Rates and/or Frequencies - Tomoharu Iwata, Y. Kawahara - 2022-12-26ArXiv030
visibility_offHigh-dimensional time series prediction using kernel-based Koopman mode regression - Jia-Chen Hua, Farzad Noorian, Duncan J. M. Moss, P. Leong, G. Gunaratne - 2017-09-15Nonlinear Dynamics2537
visibility_offNeural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear Dynamics - Tomoharu Iwata, Y. Kawahara - 2020-12-11ArXiv930
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md b/docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md deleted file mode 100644 index 4a831c24..00000000 --- a/docs/recommendations/123acfbccca0460171b6b06a4012dbb991cde55b.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:44 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Large Language Models Are Zero-Shot Time Series Forecasters -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offChronos: Learning the Language of Time Series - Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, Yuyang Wang - 2024-03-12ArXiv2318
visibility_offAutoTimes: Autoregressive Time Series Forecasters via Large Language Models - Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, Mingsheng Long - 2024-02-04ArXiv365
visibility_offTimer: Generative Pre-trained Transformers Are Large Time Series Models - Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, Mingsheng Long - 2024-02-04ArXiv665
visibility_offTimeGPT-1 - Azul Garza, Cristian Challu, Max Mergenthaler-Canseco - 2023-10-05ArXiv391
visibility_offMultiCast: Zero-Shot Multivariate Time Series Forecasting Using LLMs - Georgios Chatzigeorgakidis, Konstantinos Lentzos, Dimitrios Skoutas - 2024-05-132024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)07
visibility_offTime-LLM: Time Series Forecasting by Reprogramming Large Language Models - Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, X. Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, Qingsong Wen - 2023-10-03ArXiv1119
visibility_offLSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term Prompting - Haoxin Liu, Zhiyuan Zhao, Jindong Wang, Harshavardhan Kamarthi, B. A. Prakash - 2024-02-25ArXiv67
visibility_offTemporal Data Meets LLM - Explainable Financial Time Series Forecasting - Xinli Yu, Zheng Chen, Yuan Ling, Shujing Dong, Zongying Liu, Yanbin Lu - 2023-06-19ArXiv348
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md b/docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md deleted file mode 100644 index b4dbc7cb..00000000 --- a/docs/recommendations/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:50 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Time-LLM: Time Series Forecasting by Reprogramming Large Language Models -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term Prompting - Haoxin Liu, Zhiyuan Zhao, Jindong Wang, Harshavardhan Kamarthi, B. A. Prakash - 2024-02-25ArXiv67
visibility_offPromptCast: A New Prompt-Based Learning Paradigm for Time Series Forecasting - Hao Xue, Flora D.Salim - 2022-09-20IEEE Transactions on Knowledge and Data Engineering5617
visibility_offUnderstanding Different Design Choices in Training Large Time Series Models - Yu-Neng Chuang, Songchen Li, Jiayi Yuan, Guanchu Wang, Kwei-Herng Lai, Leisheng Yu, Sirui Ding, Chia-yuan Chang, Qiaoyu Tan, D. Zha, Xia Hu - 2024-06-20ArXiv122
visibility_offIn-context Time Series Predictor - Jiecheng Lu, Yan Sun, Shihao Yang - 2024-05-23ArXiv01
visibility_offLLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters - Ching Chang, Wenjie Peng, Tien-Fu Chen - 2023-08-16ArXiv152
visibility_offA decoder-only foundation model for time-series forecasting - Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhou - 2023-10-14ArXiv4514
visibility_offAutoTimes: Autoregressive Time Series Forecasters via Large Language Models - Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, Mingsheng Long - 2024-02-04ArXiv365
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md b/docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md deleted file mode 100644 index 7c28247c..00000000 --- a/docs/recommendations/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:45 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offHeteGraph-Mamba: Heterogeneous Graph Learning via Selective State Space Model - Zhenyu Pan, Yoonsung Jeong, Xiaoda Liu, Han Liu - 2024-05-22ArXiv02
visibility_offGraph Mamba: Towards Learning on Graphs with State Space Models - Ali Behrouz, Farnoosh Hashemi - 2024-02-13ArXiv308
visibility_offLearning Long Range Dependencies on Graphs via Random Walks - Dexiong Chen, Till Hendrik Schulz, Karsten Borgwardt - 2024-06-05ArXiv08
visibility_offWhat Can We Learn from State Space Models for Machine Learning on Graphs? - Yinan Huang, Siqi Miao, Pan Li - 2024-06-09ArXiv12
visibility_offA Scalable and Effective Alternative to Graph Transformers - Kaan Sancak, Zhigang Hua, Jin Fang, Yan Xie, Andrey Malevich, Bo Long, M. F. Balin, Ümit V. Çatalyürek - 2024-06-17ArXiv06
visibility_offDeformable Graph Transformer - Jinyoung Park, Seongjun Yun, Hyeon-ju Park, Jaewoo Kang, Jisu Jeong, KyungHyun Kim, Jung-Woo Ha, Hyunwoo J. Kim - 2022-06-29ArXiv627
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/2232751169e57a14723bfffb4ab26aa0e0e3839a.md b/docs/recommendations/2232751169e57a14723bfffb4ab26aa0e0e3839a.md deleted file mode 100644 index 62f5b568..00000000 --- a/docs/recommendations/2232751169e57a14723bfffb4ab26aa0e0e3839a.md +++ /dev/null @@ -1,237 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:26 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Rediscovering orbital mechanics with machine learning -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLearning Symbolic Physics with Graph Networks - M. Cranmer, Rui Xu, P. Battaglia, S. Ho - 2019-09-12ArXiv7768
visibility_offCelestial Machine Learning - From Data to Mars and Beyond with AI Feynman - Zi-Yu Khoo, A. Yang, J. Low, S. Bressan - 2023-12-15ArXiv232
visibility_offCelestial Machine Learning - Discovering the Planarity, Heliocentricity, and Orbital Equation of Mars with AI Feynman - Zi-Yu Khoo, Gokul Rajiv, Abel Yang, Jonathan Sze Choong Low, Stéphane Bressan - 2023-12-19ArXiv03
visibility_offMachine Learning Conservation Laws from Trajectories. - Ziming Liu, Max Tegmark - 2021-05-06Physical review letters8081
visibility_offLiving in the Physics and Machine Learning Interplay for Earth Observation - Gustau Camps-Valls, D. Svendsen, Jordi Cort'es-Andr'es, 'Alvaro Moreno-Mart'inez, Adri'an P'erez-Suay, J. Adsuara, I. Mart'in, M. Piles, Jordi Munoz-Mar'i, Luca Martino - 2020-10-18ArXiv577
visibility_offFrom Kepler to Newton: Explainable AI for Science Discovery - Zelong Li, Jianchao Ji, Yongfeng Zhang - 2021-11-24ArXiv1210
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/23c7b93a379c26c3738921282771e1a545538703.md b/docs/recommendations/23c7b93a379c26c3738921282771e1a545538703.md deleted file mode 100644 index d31a4973..00000000 --- a/docs/recommendations/23c7b93a379c26c3738921282771e1a545538703.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:58 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Solving real-world optimization tasks using physics-informed neural computing -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offNEORL: NeuroEvolution Optimization with Reinforcement Learning - M. Radaideh, Katelin Du, Paul Seurin, Devin Seyler, Xubo Gu, Haijiang Wang, K. Shirvan - 2021-12-01ArXiv322
visibility_offPhysics-supervised deep learning–based optimization (PSDLO) with accuracy and efficiency - Xiaowen Li, Lige Chang, Yajun Cao, Junqiang Lu, Xiaoli Lu, Hanqing Jiang - 2023-08-21Proceedings of the National Academy of Sciences of the United States of America24
visibility_offAutonomous Decision-Making for Aerobraking via Parallel Randomized Deep Reinforcement Learning - G. Falcone, Z. Putnam - 2023-06-01IEEE Transactions on Aerospace and Electronic Systems214
visibility_offMolOpt: Autonomous Molecular Geometry Optimization Using Multiagent Reinforcement Learning. - Rohit Modee, Sarvesh Mehta, Siddhartha Laghuvarapu, U. Priyakumar - 2023-11-27The journal of physical chemistry. B429
visibility_offAI4OPT: AI Institute for Advances in Optimization - P. V. Hentenryck, Kevin Dalmeijer - 2023-07-05AI Mag.118
visibility_offA survey on artificial intelligence trends in spacecraft guidance dynamics and control - D. Izzo, Marcus Märtens, Binfeng Pan - 2018-12-07Astrodynamics17736
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/25903eabbb1830aefa82048212e643eec660de0b.md b/docs/recommendations/25903eabbb1830aefa82048212e643eec660de0b.md deleted file mode 100644 index 2032932c..00000000 --- a/docs/recommendations/25903eabbb1830aefa82048212e643eec660de0b.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:01 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offPhysics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations - M. Raissi, P. Perdikaris, G. Karniadakis - 2019-02-01J. Comput. Phys.7319127
visibility_offPhysics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations - M. Raissi, P. Perdikaris, G. Karniadakis - 2017-11-28ArXiv753127
visibility_offDeep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations - M. Raissi - 2018-01-20J. Mach. Learn. Res.65824
visibility_offUnderstanding on Physics-Informed DeepONet - Sang-Min Lee - 2024-01-31Journal of the Korea Academia-Industrial cooperation Society00
visibility_offPhysics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations - Yingtao Luo, Qiang Liu, Yuntian Chen, Wenbo Hu, Jun Zhu - 2021-06-02Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining263
visibility_offPhysics Informed Extreme Learning Machine (PIELM) - A rapid method for the numerical solution of partial differential equations - Vikas Dwivedi, B. Srinivasan - 2019-07-08ArXiv13014
visibility_offPhysics-informed learning of governing equations from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05Nature Communications23212
visibility_offLearning data-driven discretizations for partial differential equations - Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, M. Brenner - 2018-08-15Proceedings of the National Academy of Sciences of the United States of America43065
visibility_offPhysics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations - Benwei Wu, O. Hennigh, J. Kautz, S. Choudhry, Wonmin Byeon - 2022-02-24ArXiv491
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md b/docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md deleted file mode 100644 index 69be0b1b..00000000 --- a/docs/recommendations/279cd637b7e38bba1dd8915b5ce68cbcacecbe68.md +++ /dev/null @@ -1,253 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:58 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph state-space models -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offProbabilistic Recurrent State-Space Models - Andreas Doerr, Christian Daniel, Martin Schiegg, D. Nguyen-Tuong, S. Schaal, Marc Toussaint, Sebastian Trimpe - 2018-01-31MAG, ArXiv, DBLP11093
visibility_offInterpretable Latent Variables in Deep State Space Models - Haoxuan Wu, David S. Matteson, M. Wells - 2022-03-03ArXiv040
visibility_offStanza: A Nonlinear State Space Model for Probabilistic Inference in Non-Stationary Time Series - Anna K. Yanchenko, S. Mukherjee - 2020-06-11ArXiv631
visibility_offSparse Graph Learning from Spatiotemporal Time Series - Andrea Cini, Daniele Zambon, C. Alippi - 2022-05-26J. Mach. Learn. Res.1149
visibility_offEffectively Modeling Time Series with Simple Discrete State Spaces - Michael Zhang, Khaled Kamal Saab, Michael Poli, Tri Dao, Karan Goel, Christopher Ré - 2023-03-16ArXiv2843
visibility_offStructured Inference Networks for Nonlinear State Space Models - R. G. Krishnan, Uri Shalit, D. Sontag - 2016-09-30MAG, ArXiv, DBLP42748
visibility_offDeep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems - Fiona Lippert, B. Kranstauber, E. E. V. Loon, Patrick Forr'e - 2023-06-14ArXiv123
visibility_offSrVARM: State Regularized Vector Autoregressive Model for Joint Learning of Hidden State Transitions and State-Dependent Inter-Variable Dependencies from Multi-variate Time Series - Tsung-Yu Hsieh, Yiwei Sun, Xianfeng Tang, Suhang Wang, Vasant G Honavar - 2021-04-19Proceedings of the Web Conference 2021854
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md b/docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md deleted file mode 100644 index 0787df0a..00000000 --- a/docs/recommendations/2b2aa13d4959073f61ad70555bc8c7da7d116196.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:23 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Multidimensional Approximation of Nonlinear Dynamical Systems -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDynamic tensor time series modeling and analysis - A. Surana, G. Patterson, I. Rajapakse - 2016-12-012016 IEEE 55th Conference on Decision and Control (CDC)824
visibility_offTensor Train Based Higher Order Dynamic Mode Decomposition for Dynamical Systems - Keren Li, S. Utyuzhnikov - 2023-04-11SSRN Electronic Journal212
visibility_offModeling of dynamical systems through deep learning - P. Rajendra, V. Brahmajirao - 2020-11-22Biophysical Reviews324
visibility_offA dynamical systems based framework for dimension reduction - Ryeongkyung Yoon, B. Osting - 2022-04-18ArXiv119
visibility_offLearning Data-Driven Model of Damped Coupled Oscillators from System Impulse Response - Jacob Fabro, G. Vogl, Yongzhi Qu, Reese Eischens - 2022-10-28Annual Conference of the PHM Society019
visibility_offDeep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows - Hamidreza Eivazi, H. Veisi, M. H. Naderi, V. Esfahanian - 2020-07-02ArXiv12722
visibility_offNonlinear system identification with regularized Tensor Network B-splines - Ridvan Karagoz, Kim Batselier - 2020-03-17Autom.174
visibility_offData-driven Reconstruction of Nonlinear Dynamics from Sparse Observation - K. Yeo - 2019-06-10J. Comput. Phys.2118
visibility_offData-driven prediction in dynamical systems: recent developments - Amin Ghadami, B. Epureanu - 2022-06-20Philosophical transactions. Series A, Mathematical, physical, and engineering sciences4133
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/2c9be1e38f978f43427ea5293b3138e0c4fede71.md b/docs/recommendations/2c9be1e38f978f43427ea5293b3138e0c4fede71.md deleted file mode 100644 index f9522c24..00000000 --- a/docs/recommendations/2c9be1e38f978f43427ea5293b3138e0c4fede71.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:12 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Applied Koopmanism. -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offModern Koopman Theory for Dynamical Systems - S. Brunton, M. Budišić, E. Kaiser, J. Kutz - 2021-02-24SIAM Rev.27363
visibility_offKoopman Operator Dynamical Models: Learning, Analysis and Control - Petar Bevanda, Stefan Sosnowski, S. Hirche - 2021-02-04ArXiv8847
visibility_offKoopman Operator, Geometry, and Learning of Dynamical Systems - I. Mezić - 2021-08-01Notices of the American Mathematical Society3249
visibility_offLearning Bounded Koopman Observables: Results on Stability, Continuity, and Controllability - Craig Bakker, Thiagarajan Ramachandran, W. S. Rosenthal - 2020-04-30arXiv: Dynamical Systems39
visibility_offLearning Koopman eigenfunctions for prediction and control: the transient case - Milan Korda, I. Mezić - 2018-10-20arXiv: Optimization and Control749
visibility_offOptimal Construction of Koopman Eigenfunctions for Prediction and Control - Milan Korda, I. Mezić - 2018-10-20IEEE Transactions on Automatic Control10349
visibility_offEstimating Koopman operators for nonlinear dynamical systems: a nonparametric approach - Francesco Zanini, A. Chiuso - 2021-03-25ArXiv437
visibility_offPyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator - Shaowu Pan, E. Kaiser, Brian M. de Silva, J. Kutz, S. Brunton - 2023-06-22ArXiv363
visibility_offApplied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems - J. Kutz, J. Proctor, S. Brunton - 2018-12-02Complex.6363
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/2d3000d245988a02d3c1060211e9d89c67147b49.md b/docs/recommendations/2d3000d245988a02d3c1060211e9d89c67147b49.md deleted file mode 100644 index 17e0da8a..00000000 --- a/docs/recommendations/2d3000d245988a02d3c1060211e9d89c67147b49.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:35 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Molecular latent space simulators -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offAccelerated Simulations of Molecular Systems through Learning of their Effective Dynamics - Pantelis R. Vlachas, J. Zavadlav, M. Praprotnik, P. Koumoutsakos - 2021-02-17ArXiv377
visibility_offAccelerated Simulations of Molecular Systems through Learning of Effective Dynamics. - Pantelis R. Vlachas, J. Zavadlav, M. Praprotnik, P. Koumoutsakos - 2021-12-10Journal of chemical theory and computation2977
visibility_offSimple synthetic molecular dynamics for efficient trajectory generation - John D. Russo, D. Zuckerman - 2022-04-09ArXiv138
visibility_offLearning dynamical models from stochastic trajectories - Pierre Ronceray - 2024-06-04ArXiv00
visibility_offDeep Generative Markov State Models - Hao Wu, Andreas Mardt, Luca Pasquali, F. Noé - 2018-05-19ArXiv5461
visibility_offVAMPnets for deep learning of molecular kinetics - Andreas Mardt, Luca Pasquali, Hao Wu, F. Noé - 2017-10-16Nature Communications46361
visibility_offBoltzmann Generators - Sampling Equilibrium States of Many-Body Systems with Deep Learning - F. Noé, Hao Wu - 2018-12-04ArXiv2461
visibility_offMarkov field models: Scaling molecular kinetics approaches to large molecular machines. - Tim Hempel, Simon Olsson, Frank No'e - 2022-06-23Current opinion in structural biology69
visibility_offMolecular dynamics without molecules: searching the conformational space of proteins with generative neural networks - Gregory Schwing, L. Palese, Ariel Fern'andez, L. Schwiebert, D. Gatti - 2022-06-09ArXiv133
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/2e7163e31e9b32cec11005678bae9e1dbeb6d573.md b/docs/recommendations/2e7163e31e9b32cec11005678bae9e1dbeb6d573.md deleted file mode 100644 index a7dfd019..00000000 --- a/docs/recommendations/2e7163e31e9b32cec11005678bae9e1dbeb6d573.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:37 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Nonlinear Discovery of Slow Molecular Modes using Hierarchical Dynamics Encoders -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSpectral Maps for Learning Reduced Representations of Molecular Systems - Tuugcce Gokdemir, Jakub Rydzewski - 2023-11-07ArXiv01
visibility_offCapabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems - Wei Chen, Hythem Sidky, Andrew L. Ferguson - 2019-06-02ArXiv3135
visibility_offMolecular enhanced sampling with autoencoders: On‐the‐fly collective variable discovery and accelerated free energy landscape exploration - Wei Chen, Andrew L. Ferguson - 2017-12-30Journal of Computational Chemistry16835
visibility_offAccelerated Simulations of Molecular Systems through Learning of their Effective Dynamics - Pantelis R. Vlachas, J. Zavadlav, M. Praprotnik, P. Koumoutsakos - 2021-02-17ArXiv377
visibility_offAccelerated Simulations of Molecular Systems through Learning of Effective Dynamics. - Pantelis R. Vlachas, J. Zavadlav, M. Praprotnik, P. Koumoutsakos - 2021-12-10Journal of chemical theory and computation2977
visibility_offDeep learning path-like collective variable for enhanced sampling molecular dynamics. - Thorben Fröhlking, Luigi Bonati, Valerio Rizzi, F. L. Gervasio - 2024-02-02The Journal of chemical physics311
visibility_offMind reading of the proteins: Deep-learning to forecast molecular dynamics - C. Gupta, J. Cava, Daipayan Sarkar, Eric A. Wilson, J. Vant, Steven Murray, A. Singharoy, S. Karmaker - 2020-07-29bioRxiv423
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/309c5ae93a4cabfd37747abd130866240e265b2d.md b/docs/recommendations/309c5ae93a4cabfd37747abd130866240e265b2d.md deleted file mode 100644 index 6c6afd0e..00000000 --- a/docs/recommendations/309c5ae93a4cabfd37747abd130866240e265b2d.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:50 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSystems biology informed deep learning for inferring parameters and hidden dynamics - A. Yazdani, Lu Lu, M. Raissi, G. Karniadakis - 2019-12-04PLoS Computational Biology184127
visibility_offLearning minimal representations of stochastic processes with variational autoencoders - Gabriel Fern'andez-Fern'andez, Carlo Manzo, M. Lewenstein, A. Dauphin, Gorka Muñoz-Gil - 2023-07-21ArXiv093
visibility_offmagi: A Package for Inference of Dynamic Systems from Noisy and Sparse Data via Manifold-Constrained Gaussian Processes - Samuel W. K. Wong, Shihao Yang, S. Kou - 2022-03-11J. Stat. Softw.1021
visibility_offGaussian processes meet NeuralODEs: a Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data - Mohamed Aziz Bhouri, P. Perdikaris - 2021-03-04Philosophical Transactions of the Royal Society A2043
visibility_offNeural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations - Simon Koop, M. Peletier, J. Portegies, V. Menkovski - 2022-11-17ArXiv032
visibility_offInferring the Langevin Equation with Uncertainty via Bayesian Neural Networks - Youngkyoung Bae, Seungwoong Ha, Hawoong Jeong - 2024-02-02ArXiv04
visibility_offCoupleVAE: coupled variational autoencoders for predicting perturbational single-cell RNA sequencing data - Yahao Wu, Jing Liu, Songyan Liu, Yanni Xiao, Shuqin Zhang, Limin Li - 2024-03-08bioRxiv02
visibility_offCapturing Actionable Dynamics with Structured Latent Ordinary Differential Equations - Paidamoyo Chapfuwa, Sherri Rose, L. Carin, Edward Meeds, Ricardo Henao - 2022-02-25ArXiv192
visibility_offApplications of dynamical inference to the analysis of noisy biological time series with hidden dynamical variables. - A. Duggento, D. Luchinsky, V. Smelyanskiy, M. Millonas, P. McClintock - 2009-05-04044
visibility_offModeling Dynamics of Biological Systems with Deep Generative Neural Networks - Scott A. Gigante, D. V. Dijk, Kevin R. Moon, Alexander Strzalkowski, Guy Wolf, Smita Krishnaswamy - 2018-09-27arXiv: Learning326
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/33da5e93b3c9c02256c6a98f8a843ae62e27d436.md b/docs/recommendations/33da5e93b3c9c02256c6a98f8a843ae62e27d436.md deleted file mode 100644 index 40ab6133..00000000 --- a/docs/recommendations/33da5e93b3c9c02256c6a98f8a843ae62e27d436.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:03 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Systems biology informed deep learning for inferring parameters and hidden dynamics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offParameter inference for systems biology models - Ananya Rastogi - 2021-01-01Nature Computational Science03
visibility_offLearning systems of ordinary differential equations with Physics-Informed Neural Networks: the case study of enzyme kinetics - Paola Lecca - 2024-02-01Journal of Physics: Conference Series00
visibility_offScalable Inference of Ordinary Differential Equation Models of Biochemical Processes. - Fabian Fröhlich, Carolin Loos, J. Hasenauer - 2017-11-21Methods in molecular biology2336
visibility_offIdentification of dynamic mass-action biochemical reaction networks using sparse Bayesian methods - Richard M. Jiang, Prashant Singh, Fredrik Wrede, A. Hellander, Linda Petzold - 2022-01-01PLoS Computational Biology1022
visibility_offEfficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems - Geoffrey Roeder, Paul K. Grant, Andrew Phillips, Neil Dalchau, Edward Meeds - 2019-05-24ArXiv2128
visibility_offData-Driven Modeling of Partially Observed Biological Systems - Wei-Hung Su, Ching-Shan Chou, Dongbin Xiu - 2024-01-13Communications on Applied Mathematics and Computation00
visibility_offReactive SINDy: Discovering governing reactions from concentration data - Moritz Hoffmann, C. Fröhner, F. Noé - 2018-10-12bioRxiv10261
visibility_offOptimizing Physics-Informed Neural Network in Dynamic System Simulation and Learning of Parameters - Ebenezer O. Oluwasakin, Abdul Q. M. Khaliq - 2023-11-28Algorithms01
visibility_offScientific Deep Machine Learning Concepts for the Prediction of Concentration Profiles and Chemical Reaction Kinetics: Consideration of Reaction Conditions. - Niklas Adebar, Julian Keupp, Victor N Emenike, Jonas Kühlborn, Lisa Vom Dahl, Robert Möckel, Jens Smiatek - 2024-01-25The journal of physical chemistry. A228
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md b/docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md deleted file mode 100644 index 65c5db8c..00000000 --- a/docs/recommendations/35e2571c17246577e0bc1b9de57a314c3b60e220.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:26 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Discovery of Physics From Data: Universal Laws and Discrepancies -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offA Unified Sparse Optimization Framework to Learn Parsimonious Physics-Informed Models From Data - Kathleen P. Champion, P. Zheng, A. Aravkin, S. Brunton, J. Kutz - 2019-06-25IEEE Access9563
visibility_offMachine-Learning Non-Conservative Dynamics for New-Physics Detection - Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, M. Tegmark, Tie-Yan Liu - 2021-05-31Physical review. E1482
visibility_offDiscovering conservation laws from trajectories via machine learning - Seungwoong Ha, Hawoong Jeong - 2021-02-08ArXiv943
visibility_offThe Lie Detector. - A. Young, A. Lawrie - 2019-12-13arXiv: Signal Processing018
visibility_offPhysics-Informed Machine Learning for Modeling and Control of Dynamical Systems - Truong X. Nghiem, Ján Drgoňa, Colin N. Jones, Zoltán Nagy, Roland Schwan, Biswadip Dey, A. Chakrabarty, S. D. Cairano, J. Paulson, Andrea Carron, M. Zeilinger, Wenceslao Shaw-Cortez, D. Vrabie - 2023-05-312023 American Control Conference (ACC)1537
visibility_offScale-invariant Learning by Physics Inversion - Philipp Holl, V. Koltun, Nils Thuerey - 2021-09-30ArXiv, DBLP5103
visibility_offLearning continuous models for continuous physics - A. Krishnapriyan, A. Queiruga, N. Benjamin Erichson, Michael W. Mahoney - 2022-02-17Communications Physics2330
visibility_offMachine Learning Conservation Laws from Trajectories. - Ziming Liu, Max Tegmark - 2021-05-06Physical review letters8281
visibility_offFrom data to conservation laws - F. Chirigati - 2023-09-01Nature Computational Science017
visibility_offPhysics-informed regularization and structure preservation for learning stable reduced models from data with operator inference - N. Sawant, B. Kramer, B. Peherstorfer - 2021-07-06ArXiv2127
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/3a58efcc4558727cc5c131c44923635da4524f33.md b/docs/recommendations/3a58efcc4558727cc5c131c44923635da4524f33.md deleted file mode 100644 index 4cb0e3a0..00000000 --- a/docs/recommendations/3a58efcc4558727cc5c131c44923635da4524f33.md +++ /dev/null @@ -1,225 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:21 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Relational inductive biases, deep learning, and graph networks -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offA Practical Tutorial on Graph Neural Networks - I. Ward, J. Joyner, C. Lickfold, Yulan Guo, Bennamoun - 2020-10-11ACM Computing Surveys (CSUR)863
visibility_offOn the Binding Problem in Artificial Neural Networks - Klaus Greff, Sjoerd van Steenkiste, J. Schmidhuber - 2020-12-09ArXiv20095
visibility_offA Relational Inductive Bias for Dimensional Abstraction in Neural Networks - Declan Campbell, Jonathan D. Cohen - 2024-02-28ArXiv22
visibility_offV-LoL: A Diagnostic Dataset for Visual Logical Learning - Lukas Helff, Wolfgang Stammer, Hikaru Shindo, D. Dhami, K. Kersting - 2023-06-13ArXiv111
visibility_offEvaluating Logical Generalization in Graph Neural Networks - Koustuv Sinha, Shagun Sodhani, Joelle Pineau, William L. Hamilton - 2020-03-14ArXiv2166
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md b/docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md deleted file mode 100644 index 4d703246..00000000 --- a/docs/recommendations/3c9961153493370500020c81527b3548c96f81e0.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:15 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Data-driven discovery of coordinates and governing equations -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDiscovering governing equations from data by sparse identification of nonlinear dynamical systems - S. Brunton, J. Proctor, J. Kutz - 2015-09-11Proceedings of the National Academy of Sciences316863
visibility_offPhysics-informed learning of governing equations from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05Nature Communications23412
visibility_offDeep learning of physical laws from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05ArXiv1912
visibility_offModeling of dynamical systems through deep learning - P. Rajendra, V. Brahmajirao - 2020-11-22Biophysical Reviews324
visibility_offBayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants - Liyao (Mars) Gao, J. Kutz - 2022-11-19Proceedings of the Royal Society A1031
visibility_offSymbolic regression via neural networks. - N. Boddupalli, T. Matchen, J. Moehlis - 2023-08-01Chaos237
visibility_offAutomatically discovering ordinary differential equations from data with sparse regression - Kevin Egan, Weizhen Li, Rui Carvalho - 2024-01-09Communications Physics71
visibility_offDiscovering sparse interpretable dynamics from partial observations - Peter Y. Lu, Joan Ariño Bernad, M. Soljačić - 2021-07-22Communications Physics1794
visibility_offSparse Estimation for Hamiltonian Mechanics - Yuya Note, Masahito Watanabe, Hiroaki Yoshimura, Takaharu Yaguchi, Toshiaki Omori - 2024-03-25Mathematics011
visibility_offUncovering Closed-form Governing Equations of Nonlinear Dynamics from Videos - Lele Luan, Yang Liu, Hao Sun - 2021-06-09ArXiv012
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md b/docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md deleted file mode 100644 index 2edff6bc..00000000 --- a/docs/recommendations/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:17 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Chaos as an intermittently forced linear system -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offFeaturizing Koopman Mode Decomposition For Robust Forecasting - D. Aristoff, J. Copperman, Nathan Mankovich, Alexander Davies - 2023-12-14ArXiv012
visibility_offDeep learning delay coordinate dynamics for chaotic attractors from partial observable data - Charles D. Young, M. Graham - 2022-11-20Physical review. E850
visibility_offDiscovering governing equations from partial measurements with deep delay autoencoders - Joseph Bakarji, Kathleen P. Champion, J. Nathan Kutz, S. Brunton - 2022-01-13Proceedings of the Royal Society A6863
visibility_offDEFM: Delay-embedding-based forecast machine for time series forecasting by spatiotemporal information transformation. - Hao Peng, Pei Chen, R. Liu - 2020-05-16Chaos178
visibility_offDEFM: Delay-embedding-based forecast machine for time series forecasting by spatiotemporal information transformation. - Hao Peng, Pei Chen, R. Liu - 2020-05-16Chaos178
visibility_offDetecting chaos in lineage-trees: A deep learning approach - H. Rappeport, Irit Levin Reisman, Naftali Tishby, N. Balaban - 2021-06-08ArXiv256
visibility_offCluster-based network modeling—From snapshots to complex dynamical systems - Daniel Fernex, B. R. Noack, R. Semaan - 2021-06-01Science Advances4149
visibility_offCluster-based network modeling -- automated robust modeling of complex dynamical systems - Daniel Fernex, B. R. Noack, R. Semaan - 2020-10-30arXiv: Data Analysis, Statistics and Probability149
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/43879cf527f4918955fd55128baa6745174d8555.md b/docs/recommendations/43879cf527f4918955fd55128baa6745174d8555.md deleted file mode 100644 index cf6a1115..00000000 --- a/docs/recommendations/43879cf527f4918955fd55128baa6745174d8555.md +++ /dev/null @@ -1,262 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:20 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph networks as learnable physics engines for inference and control -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offInteraction Networks for Learning about Objects, Relations and Physics - P. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, K. Kavukcuoglu - 2016-12-01MAG, ArXiv, DBLP129371
visibility_offLearning Visual Dynamics Models of Rigid Objects using Relational Inductive Biases - Fábio Ferreira, Lin Shao, T. Asfour, J. Bohg - 2019-09-09ArXiv354
visibility_offLearning Heterogeneous Interaction Strengths by Trajectory Prediction with Graph Neural Network - Seungwoong Ha, Hawoong Jeong - 2022-08-28ArXiv143
visibility_offFactored World Models for Zero-Shot Generalization in Robotic Manipulation - Ondrej Biza, Thomas Kipf, David Klee, Robert W. Platt, Jan-Willem van de Meent, Lawson L. S. Wong - 2022-02-10ArXiv925
visibility_offInteractive Differentiable Simulation - Eric Heiden, David Millard, Hejia Zhang, G. Sukhatme - 2019-05-01ArXiv4691
visibility_offVisual Interaction Networks: Learning a Physics Simulator from Video - Nicholas Watters, Daniel Zoran, T. Weber, P. Battaglia, Razvan Pascanu, A. Tacchetti - 2017-06-05MAG, ArXiv, DBLP25567
visibility_offContrastive Learning of Structured World Models - Thomas Kipf, Elise van der Pol, M. Welling - 2019-11-27ArXiv25088
visibility_offLearning Symbolic Physics with Graph Networks - M. Cranmer, Rui Xu, P. Battaglia, S. Ho - 2019-09-12ArXiv7768
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/449310e3538b08b43227d660227dfd2875c3c3c1.md b/docs/recommendations/449310e3538b08b43227d660227dfd2875c3c3c1.md deleted file mode 100644 index 2c720e71..00000000 --- a/docs/recommendations/449310e3538b08b43227d660227dfd2875c3c3c1.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:05:50 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Neural Ordinary Differential Equations -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offCharacteristic Neural Ordinary Differential Equations - Xingzi Xu, Ali Hasan, Khalil Elkhalil, Jie Ding, V. Tarokh - 2021-11-25ArXiv162
visibility_offHeavy Ball Neural Ordinary Differential Equations - Hedi Xia, Vai Suliafu, H. Ji, T. Nguyen, A. Bertozzi, S. Osher, Bao Wang - 2021-10-10ArXiv, DBLP4470
visibility_offLearning Polymorphic Neural ODEs With Time-Evolving Mixture - Tehrim Yoon, Sumin Shin, Eunho Yang - 2022-01-25IEEE Transactions on Pattern Analysis and Machine Intelligence429
visibility_offDifferential Equations for Continuous-Time Deep Learning - Lars Ruthotto - 2024-01-08ArXiv21
visibility_offGenerative Modeling with Neural Ordinary Differential Equations - Tim Dockhorn - 2019-12-1909
visibility_offSymmetry-regularized neural ordinary differential equations - Wenbo Hao - 2023-11-28ArXiv00
visibility_offHow to train your neural ODE - Chris Finlay, J. Jacobsen, L. Nurbekyan, Adam M. Oberman - 2020-02-07MAG, ArXiv, DBLP24730
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md b/docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md deleted file mode 100644 index d8311235..00000000 --- a/docs/recommendations/455bfc515eb279cc09023faa1f78c6efb61224ba.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:38 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph-Guided Network for Irregularly Sampled Multivariate Time Series -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offPrimeNet: Pre-training for Irregular Multivariate Time Series - Ranak Roy Chowdhury, Jiacheng Li, Xiyuan Zhang, Dezhi Hong, Rajesh K. Gupta, Jingbo Shang - 2023-06-26DBLP916
visibility_offFinding Short Signals in Long Irregular Time Series with Continuous-Time Attention Policy Networks - Thomas Hartvigsen, Jidapa Thadajarassiri, Xiangnan Kong, Elke A. Rundensteiner - 2023-02-08ArXiv138
visibility_offContinuous Time Evidential Distributions for Irregular Time Series - Taylor W. Killian, Haoran Zhang, Thomas Hartvigsen, Ava P. Amini - 2023-07-25ArXiv012
visibility_offCompatible Transformer for Irregularly Sampled Multivariate Time Series - Yuxi Wei, Juntong Peng, Tong He, Chenxin Xu, Jian Zhang, Shirui Pan, Siheng Chen - 2023-10-172023 IEEE International Conference on Data Mining (ICDM)08
visibility_offLearning from Irregularly-Sampled Time Series: A Missing Data Perspective - Steven Cheng-Xian Li, Benjamin M Marlin - 2020-07-12MAG, ArXiv, DBLP4732
visibility_offTimeAutoML: Autonomous Representation Learning for Multivariate Irregularly Sampled Time Series - Yang Jiao, Kai Yang, Shaoyu Dou, Pan Luo, Sijia Liu, Dongjin Song - 2020-10-04ArXiv622
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md b/docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md deleted file mode 100644 index 010a684c..00000000 --- a/docs/recommendations/4971f9abd024e40fbbdff2e9492745b68a6bca01.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:21 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method - Adam Purnomo, M. Hayashibe - 2022-09-04Scientific Reports223
visibility_offSparse Identification of Nonlinear Dynamics with Side Information (SINDy-SI) - Gabriel F. Machado, Morgan Jones - 2023-10-06ArXiv11
visibility_offPySINDy: A comprehensive Python package for robust sparse system identification - A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Jared L. Callaham, Charles B. Delahunt, Kathleen P. Champion, Jean-Christophe Loiseau, J. Kutz, S. Brunton - 2021-11-12J. Open Source Softw.10963
visibility_offAutomatically discovering ordinary differential equations from data with sparse regression - Kevin Egan, Weizhen Li, Rui Carvalho - 2024-01-09Communications Physics71
visibility_offDerivative-Based SINDy (DSINDy): Addressing the Challenge of Discovering Governing Equations from Noisy Data - J. Wentz, A. Doostan - 2022-11-10SSRN Electronic Journal833
visibility_offA Robust SINDy Approach by Combining Neural Networks and an Integral Form - A. Forootani, P. Goyal, P. Benner - 2023-09-13ArXiv214
visibility_offSINDy vs Hard Nonlinearities and Hidden Dynamics: a Benchmarking Study - Aurelio Raffa Ugolini, Valentina Breschi, Andrea Manzoni, M. Tanelli - 2024-03-01ArXiv01
visibility_offWeak SINDy For Partial Differential Equations - D. Messenger, D. Bortz - 2020-07-06Journal of computational physics11919
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md b/docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md deleted file mode 100644 index f7c67325..00000000 --- a/docs/recommendations/4a111f7a3b56d0468f13104999844885157ef17d.md +++ /dev/null @@ -1,237 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:48 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Unified Training of Universal Time Series Forecasting Transformers -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offChronos: Learning the Language of Time Series - Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, Yuyang Wang - 2024-03-12ArXiv2318
visibility_offTimer: Generative Pre-trained Transformers Are Large Time Series Models - Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, Mingsheng Long - 2024-02-04ArXiv665
visibility_offA Time Series is Worth 64 Words: Long-term Forecasting with Transformers - Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, J. Kalagnanam - 2022-11-27ArXiv47934
visibility_offHiMTM: Hierarchical Multi-Scale Masked Time Series Modeling with Self-Distillation for Long-Term Forecasting - Shubao Zhao, Ming Jin, Zhaoxiang Hou, Che-Sheng Yang, Zengxiang Li, Qingsong Wen, Yi Wang - 2024-01-10ArXiv05
visibility_offFAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting - Ruiqi Li, Maowei Jiang, Kai Wang, Kaiduo Feng, Quangao Liu, Yue Sun, Xiufang Zhou - 2024-05-22ArXiv02
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/4e837965494c4edbec4d30832d31ba5639996da8.md b/docs/recommendations/4e837965494c4edbec4d30832d31ba5639996da8.md deleted file mode 100644 index 420d420f..00000000 --- a/docs/recommendations/4e837965494c4edbec4d30832d31ba5639996da8.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:47 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/pharmacodynamic modelling -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDeep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling - A. Janssen, F. Leebeek, M. Cnossen, R. Mathôt - 2022-05-27CPT: Pharmacometrics & Systems Pharmacology1347
visibility_offBridging pharmacology and neural networks: A deep dive into neural ordinary differential equations. - Idris Bachali Losada, N. Terranova - 2024-07-11CPT: pharmacometrics & systems pharmacology012
visibility_offNeural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens - James Lu, Kaiwen Deng, Xinyuan Zhang, Gengbo Liu, Y. Guan - 2021-06-30iScience5438
visibility_offNeural Pharmacodynamic State Space Modeling - Zeshan Hussain, R. G. Krishnan, D. Sontag - 2021-02-22ArXiv, DBLP848
visibility_offMachine learning for pharmacokinetic/pharmacodynamic modeling. - Albert Tang - 2023-01-01Journal of pharmaceutical sciences41
visibility_offStudy of drug assimilation in human system using physics informed neural networks - Kanupriya Goswami, Arpana Sharma, Madhu Pruthi, Richa Gupta - 2021-10-08International Journal of Information Technology73
visibility_offDiscovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks - I. Nasim, Adam Nasim - 2024-04-30ArXiv03
visibility_offExploring Transformer Model in Longitudinal Pharmacokinetic/Pharmacodynamic Analyses and Comparing with Alternative Natural Language Processing Models. - Yiming Cheng, Hongxiang Hu, Xin Dong, Xiaoran Hao, Yan Li - 2024-02-01Journal of pharmaceutical sciences04
visibility_offLow-dimensional neural ODEs and their application in pharmacokinetics - Dominic Stefan Bräm, U. Nahum, J. Schropp, M. Pfister, Gilbert Koch - 2023-10-14Journal of Pharmacokinetics and Pharmacodynamics53
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/4fd23f18cfb2105ccadda5a51fed13063d611fff.md b/docs/recommendations/4fd23f18cfb2105ccadda5a51fed13063d611fff.md deleted file mode 100644 index c1cd2151..00000000 --- a/docs/recommendations/4fd23f18cfb2105ccadda5a51fed13063d611fff.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:16 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Learning 3D Particle-based Simulators from RGB-D Videos -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offVisual Interaction Networks: Learning a Physics Simulator from Video - Nicholas Watters, Daniel Zoran, T. Weber, P. Battaglia, Razvan Pascanu, A. Tacchetti - 2017-06-05MAG, ArXiv, DBLP25567
visibility_off3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive Physics under Challenging Scenes - Haotian Xue, A. Torralba, J. Tenenbaum, Daniel L. K. Yamins, Yunzhu Li, H. Tung - 2023-04-222023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)5127
visibility_offT3VIP: Transformation-based $3\mathrm{D}$ Video Prediction - Iman Nematollahi, Erick Rosete-Beas, Seyed Mahdi B. Azad, Raghunandan Rajan, F. Hutter, Wolfram Burgard - 2022-09-192022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2121
visibility_offT3VIP: Transformation-based $3\mathrm{D}$ Video Prediction - Iman Nematollahi, Erick Rosete-Beas, Seyed Mahdi B. Azad, Raghunandan Rajan, F. Hutter, Wolfram Burgard - 2022-09-192022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2121
visibility_offStructured Object-Aware Physics Prediction for Video Modeling and Planning - Jannik Kossen, Karl Stelzner, Marcel Hussing, C. Voelcker, K. Kersting - 2019-10-06ArXiv6758
visibility_offURDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images - Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo, Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter Fox, Abhishek Gupta - 2024-05-19ArXiv29
visibility_offHindsight for Foresight: Unsupervised Structured Dynamics Models from Physical Interaction - Iman Nematollahi, Oier Mees, Lukás Hermann, Wolfram Burgard - 2020-08-022020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)14121
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/53c9f3c34d8481adaf24df3b25581ccf1bc53f5c.md b/docs/recommendations/53c9f3c34d8481adaf24df3b25581ccf1bc53f5c.md deleted file mode 100644 index 95881927..00000000 --- a/docs/recommendations/53c9f3c34d8481adaf24df3b25581ccf1bc53f5c.md +++ /dev/null @@ -1,262 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:00 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Physics-informed machine learning -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offA Taxonomic Survey of Physics-Informed Machine Learning - J. Pateras, P. Rana, Preetam Ghosh - 2023-06-07Applied Sciences711
visibility_offPhysics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics - Salah A. Faroughi, Nikhil M. Pawar, Célio Fernandes, M. Raissi, Subasish Das, N. Kalantari, S. K. Mahjour - 2024-01-08J. Comput. Inf. Sci. Eng.2224
visibility_offMachine Learning Through Physics–Informed Neural Networks: Progress and Challenges - Klapa Antonion, Xiao Wang, M. Raissi, Laurn Joshie - 2024-01-20Academic Journal of Science and Technology224
visibility_offUnderstanding on Physics-Informed DeepONet - Sang-Min Lee - 2024-01-31Journal of the Korea Academia-Industrial cooperation Society00
visibility_offPhysics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing - Salah A. Faroughi, N. Pawar, C. Fernandes, Subasish Das, N. Kalantari, S. K. Mahjour - 2022-11-14ArXiv3129
visibility_offGeneric bounds on the approximation error for physics-informed (and) operator learning - Tim De Ryck, Siddhartha Mishra - 2022-05-23ArXiv4810
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/58912e2c2aaa77d1448d51e9d9460e06a5b924b9.md b/docs/recommendations/58912e2c2aaa77d1448d51e9d9460e06a5b924b9.md deleted file mode 100644 index 256aba29..00000000 --- a/docs/recommendations/58912e2c2aaa77d1448d51e9d9460e06a5b924b9.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:37 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article VAMPnets for deep learning of molecular kinetics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offAuthor Correction: VAMPnets for deep learning of molecular kinetics - Andreas Mardt, Luca Pasquali, Hao Wu, F. Noé - 2018-10-22Nature Communications2461
visibility_offDeepWEST: Deep Learning of Kinetic Models with the Weighted Ensemble Simulation Toolkit for Enhanced Sampling. - Anupam Anand Ojha, Saumya Thakur, Surl-Hee Ahn, Rommie E. Amaro - 2023-01-31Journal of chemical theory and computation753
visibility_offGraphVAMPNet, using graph neural networks and variational approach to markov processes for dynamical modeling of biomolecules - Mahdi Ghorbani, Samarjeet Prasad, Jeffery B. Klauda, B. Brooks - 2022-01-12The Journal of chemical physics2264
visibility_offMind reading of the proteins: Deep-learning to forecast molecular dynamics - C. Gupta, J. Cava, Daipayan Sarkar, Eric A. Wilson, J. Vant, Steven Murray, A. Singharoy, S. Karmaker - 2020-07-29bioRxiv423
visibility_offNonlinear Discovery of Slow Molecular Modes using Hierarchical Dynamics Encoders - Wei Chen, Hythem Sidky, Andrew L. Ferguson - 2019-02-09The Journal of chemical physics7735
visibility_offMolecular latent space simulators - Hythem Sidky, Wei Chen, Andrew L. Ferguson - 2020-07-01Chemical Science3135
visibility_offMachine Learning in Molecular Dynamics Simulations of Biomolecular Systems - Christopher Kolloff, Simon Olsson - 2022-05-06ArXiv24
visibility_offMarkov field models: Scaling molecular kinetics approaches to large molecular machines. - Tim Hempel, Simon Olsson, Frank No'e - 2022-06-23Current opinion in structural biology69
visibility_offPredicting Future Kinetic States of Physicochemical Systems Using Generative Pre-trained Transformer - Palash Bera, Jagannath Mondal - 2024-06-19bioRxiv04
visibility_offMarkov State Models: From an Art to a Science. - B. Husic, V. Pande - 2018-02-02Journal of the American Chemical Society584103
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md b/docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md deleted file mode 100644 index cf55310e..00000000 --- a/docs/recommendations/5bd2c0acaf58c25f71617db2396188c74d29bf14.md +++ /dev/null @@ -1,225 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:55 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Domain Adaptation for Time Series Under Feature and Label Shifts -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDeep Unsupervised Domain Adaptation for Time Series Classification: a Benchmark - Hassan Ismail Fawaz, Ganesh Del Grosso, Tanguy Kerdoncuff, Aurelie Boisbunon, Illyyne Saffar - 2023-12-15ArXiv15
visibility_offADATIME: A Benchmarking Suite for Domain Adaptation on Time Series Data - Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu, C. Kwoh, Xiaoli Li - 2022-03-15ACM Transactions on Knowledge Discovery from Data3836
visibility_offDomain Adaptation with Representation Learning and Nonlinear Relation for Time Series - A. Hussein, Hazem Hajj - 2022-02-15ACM Transactions on Internet of Things119
visibility_offMatch-And-Deform: Time Series Domain Adaptation through Optimal Transport and Temporal Alignment - Franccois Painblanc, L. Chapel, N. Courty, Chloé Friguet, Charlotte Pelletier, R. Tavenard - 2023-08-24ArXiv233
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md b/docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md deleted file mode 100644 index c41737b5..00000000 --- a/docs/recommendations/5d150cec2775f9bc863760448f14104cc8f42368.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:12 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Discovering governing equations from data by sparse identification of nonlinear dynamical systems -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offData-driven discovery of coordinates and governing equations - Kathleen P. Champion, Bethany Lusch, J. Kutz, S. Brunton - 2019-03-29Proceedings of the National Academy of Sciences of the United States of America59563
visibility_offAutomatically discovering ordinary differential equations from data with sparse regression - Kevin Egan, Weizhen Li, Rui Carvalho - 2024-01-09Communications Physics71
visibility_offSparse Estimation for Hamiltonian Mechanics - Yuya Note, Masahito Watanabe, Hiroaki Yoshimura, Takaharu Yaguchi, Toshiaki Omori - 2024-03-25Mathematics011
visibility_offPhysics-informed learning of governing equations from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05Nature Communications23412
visibility_offSparsistent Model Discovery - Georges Tod, G. Both, R. Kusters - 2021-06-22ArXiv112
visibility_offDeep learning of physical laws from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05ArXiv1912
visibility_offDiscovery of nonlinear dynamical systems using a Runge–Kutta inspired dictionary-based sparse regression approach - P. Goyal, P. Benner - 2021-05-11Proceedings. Mathematical, Physical, and Engineering Sciences3753
visibility_offExploiting sparsity and equation-free architectures in complex systems - J. Proctor, S. Brunton, Bingni W. Brunton, J. Kutz - 2014-12-10The European Physical Journal Special Topics6463
visibility_offExploiting sparsity and equation-free architectures in complex systems - J. Proctor, S. Brunton, Bingni W. Brunton, J. Kutz - 2014-12-01The European Physical Journal Special Topics763
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md b/docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md deleted file mode 100644 index 092a1d5b..00000000 --- a/docs/recommendations/60d0d998fa038182b3b69a57adb9b2f82d40589c.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:14 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offAutomated discovery of fundamental variables hidden in experimental data - Boyuan Chen, Kuang Huang, Sunand Raghupathi, I. Chandratreya, Qi Du, H. Lipson - 2022-07-01Nature Computational Science6620
visibility_offOpportunities for machine learning in scientific discovery - Ricardo Vinuesa, Jean Rabault, Hossein Azizpour, Stefan Bauer, Bingni W. Brunton, Arne Elofsson, Elias Jarlebring, Hedvig Kjellstrom, Stefano Markidis, David Marlevi, Paola Cinnella, S. Brunton - 2024-05-07ArXiv163
visibility_offDeepMoD: Deep learning for model discovery in noisy data - G. Both, Subham Choudhury, P. Sens, R. Kusters - 2019-04-20J. Comput. Phys.10034
visibility_offDiscovering sparse interpretable dynamics from partial observations - Peter Y. Lu, Joan Ariño Bernad, M. Soljačić - 2021-07-22Communications Physics1794
visibility_offPNAS Plus Significance Statements - Ronald R. Coifman, David A. Kessler, A. Goodkind - 2017-09-19Proceedings of the National Academy of Sciences4013
visibility_offDiscovering State Variables Hidden in Experimental Data - Boyuan Chen, Kuang Huang, Sunand Raghupathi, I. Chandratreya, Qi Du, Hod Lipson - 2021-12-20ArXiv1172
visibility_offPhysics-informed deep-learning applications to experimental fluid mechanics - Hamidreza Eivazi, Yuning Wang, R. Vinuesa - 2022-03-29Measurement Science and Technology2138
visibility_offA physics-informed operator regression framework for extracting data-driven continuum models - Ravi G. Patel, N. Trask, M. Wood, E. Cyr - 2020-09-25ArXiv8417
visibility_offData-Driven Discovery of Coarse-Grained Equations - Joseph Bakarji, D. Tartakovsky - 2020-01-30J. Comput. Phys.3147
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/643ac3ef063c77eb02a3d52637c11fe028bfae28.md b/docs/recommendations/643ac3ef063c77eb02a3d52637c11fe028bfae28.md deleted file mode 100644 index 37bb348a..00000000 --- a/docs/recommendations/643ac3ef063c77eb02a3d52637c11fe028bfae28.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:25 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Discovering Symbolic Models from Deep Learning with Inductive Biases -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLearning Symbolic Physics with Graph Networks - M. Cranmer, Rui Xu, P. Battaglia, S. Ho - 2019-09-12ArXiv7768
visibility_offDifferentiable Physics-informed Graph Networks - Sungyong Seo, Yan Liu - 2019-02-08ArXiv6313
visibility_offRediscovering orbital mechanics with machine learning - P. Lemos, N. Jeffrey, M. Cranmer, S. Ho, P. Battaglia - 2022-02-04Machine Learning: Science and Technology5546
visibility_offDiscovering physical concepts with neural networks - Raban Iten, Tony Metger, H. Wilming, L. D. Rio, R. Renner - 2018-07-27Physical review letters35569
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md b/docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md deleted file mode 100644 index 41bca1bc..00000000 --- a/docs/recommendations/648d90b713997a771e2c49f02cd771e8b7b10b37.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:54 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offTime-series representation learning via Time-Frequency Fusion Contrasting - Wenbo Zhao, Ling Fan - 2024-06-12Frontiers in Artificial Intelligence01
visibility_offTS-MoCo: Time-Series Momentum Contrast for Self-Supervised Physiological Representation Learning - Philipp Hallgarten, David Bethge, Ozan Özdenizci, T. Große-Puppendahl, Enkelejda Kasneci - 2023-06-102023 31st European Signal Processing Conference (EUSIPCO)038
visibility_offSupervised Contrastive Few-Shot Learning for High-Frequency Time Series - X. Chen, Cheng Ge, Mingxing Wang, Jin Wang - 2023-06-26DBLP2139
visibility_offContrast Everything: A Hierarchical Contrastive Framework for Medical Time-Series - Yihe Wang, Yu Han, Haishuai Wang, Xiang Zhang - 2023-10-21ArXiv182
visibility_offSelf-supervised Classification of Clinical Multivariate Time Series using Time Series Dynamics - Yakir Yehuda, Daniel Freedman, Kira Radinsky - 2023-08-04Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining024
visibility_offPhase-driven Domain Generalizable Learning for Nonstationary Time Series - Payal Mohapatra, Lixu Wang, Qi Zhu - 2024-02-05ArXiv19
visibility_offContrastive Neural Processes for Self-Supervised Learning - Konstantinos Kallidromitis, Denis A. Gudovskiy, Kozuka Kazuki, Ohama Iku, Luca Rigazio - 2021-10-24ArXiv, DBLP1013
visibility_offLarge Scale Time-Series Representation Learning via Simultaneous Low and High Frequency Feature Bootstrapping - Vandan Gorade, Azad Singh, Deepak Mishra - 2022-04-24IEEE transactions on neural networks and learning systems45
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/68b6ca45a588d538b36335b23f6969c960cf2e6e.md b/docs/recommendations/68b6ca45a588d538b36335b23f6969c960cf2e6e.md deleted file mode 100644 index 51eb4af5..00000000 --- a/docs/recommendations/68b6ca45a588d538b36335b23f6969c960cf2e6e.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:15 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Modern Koopman Theory for Dynamical Systems -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offEstimating Koopman operators for nonlinear dynamical systems: a nonparametric approach - Francesco Zanini, A. Chiuso - 2021-03-25ArXiv437
visibility_offKoopman Operator Dynamical Models: Learning, Analysis and Control - Petar Bevanda, Stefan Sosnowski, S. Hirche - 2021-02-04ArXiv8847
visibility_offData-Driven Approximations of Dynamical Systems Operators for Control - E. Kaiser, J. Kutz, S. Brunton - 2019-02-26Lecture Notes in Control and Information Sciences3763
visibility_offNonlinear Data-Driven Approximation of the Koopman Operator - Dan Wilson - 2022-10-10ArXiv019
visibility_offRigorous data‐driven computation of spectral properties of Koopman operators for dynamical systems - Matthew J. Colbrook, Alex Townsend - 2021-11-29Communications on Pure and Applied Mathematics4228
visibility_offKoopman Operator, Geometry, and Learning of Dynamical Systems - I. Mezić - 2021-08-01Notices of the American Mathematical Society3249
visibility_offMultiplicative Dynamic Mode Decomposition - Nicolas Boull'e, Matthew J. Colbrook - 2024-05-08ArXiv116
visibility_offApplied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems - J. Kutz, J. Proctor, S. Brunton - 2018-12-02Complex.6363
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/68d54a4ef82873fd3a0e857ad2c136d65fa17db8.md b/docs/recommendations/68d54a4ef82873fd3a0e857ad2c136d65fa17db8.md deleted file mode 100644 index bbbc4d49..00000000 --- a/docs/recommendations/68d54a4ef82873fd3a0e857ad2c136d65fa17db8.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:59 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Systems biology informed neural networks (SBINN) predict response and novel combinations for PD-1 checkpoint blockade -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSystems biology informed neural networks (SBINN) predict response and novel combinations for PD-1 checkpoint blockade - M. Przedborski, Munisha Smalley, S. Thiyagarajan, A. Goldman, M. Kohandel - 2021-07-15Communications Biology928
visibility_offIntegrating Systems Biology and an Ex Vivo Human Tumor Model Elucidates PD-1 Blockade Response Dynamics - Munisha Smalley, Munisha Smalley, M. Przedborski, S. Thiyagarajan, Moriah Pellowe, A. Verma, N. Brijwani, Debika Datta, Misti Jain, Basavaraja U. Shanthappa, Vidushi Kapoor, K. Gopinath, D. C. Doval, K. Sabitha, G. Taroncher-Oldenburg, B. Majumder, P. Majumder, M. Kohandel, Aaron Goldman, Aaron Goldman - 2020-06-01iScience673
visibility_offNetwork-based machine learning approach to predict immunotherapy response in cancer patients - JungHo Kong, Doyeon Ha, Juhun Lee, Inhae Kim, Minhyuk Park, S. Im, Kunyoo Shin, Sanguk Kim - 2022-06-28Nature Communications6545
visibility_offUse of a systems-biology informed machine learning model to predict drug response using clinically available NGS data. - Maayan Baron, Andrey Chursov, Brandon Funkhouser, Jacob Kaffey, S. Sushanth Kumar, G. Komatsoulis, Felicia Kuperwaser, M. Ramchandran, J. Sherman, E. Vucic - 2023-06-01Journal of Clinical Oncology035
visibility_offPredictive systems biomarkers of response to immune checkpoint inhibitors - Óscar Lapuente-Santana, Maisa van Genderen, P. Hilbers, F. Finotello, Federica Eduati - 2021-02-07bioRxiv035
visibility_offA Computational Model of Neoadjuvant PD-1 Inhibition in Non-Small Cell Lung Cancer - M. Jafarnejad, Chang Gong, E. Gabrielson, I. Bartelink, P. Vicini, B. Wang, R. Narwal, L. Roskos, A. Popel - 2019-06-24The AAPS Journal5069
visibility_offHybridizing mechanistic mathematical modeling with deep learning methods to predict individual cancer patient survival after immune checkpoint inhibitor therapy - J. D. Butner, P. Dogra, Caroline Chung, Eugene J Koay, James Welsh, David Hong, Vittorio Cristini, Zhihui Wang - 2024-03-29Research Square016
visibility_offBiology-aware mutation-based deep learning for outcome prediction of cancer immunotherapy with immune checkpoint inhibitors - Junyan Liu, Md Tauhidul Islam, Shengtian Sang, Liang Qiu, Lei Xing - 2023-11-06NPJ Precision Oncology016
visibility_offInterpretable predictions of cellular behavior - Ananya Rastogi - 2021-03-01Nature Computational Science03
visibility_offLeveraging multi-omics data to empower quantitative systems pharmacology in immuno-oncology - Theinmozhi Arulraj, Hanwen Wang, Alberto Ippolito, Shuming Zhang, E. Fertig, Aleksander S. Popel - 2024-03-27Briefings in Bioinformatics143
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/6adeda1af8abc6bc3c17c0b39f635a845476cd9f.md b/docs/recommendations/6adeda1af8abc6bc3c17c0b39f635a845476cd9f.md deleted file mode 100644 index 9d479776..00000000 --- a/docs/recommendations/6adeda1af8abc6bc3c17c0b39f635a845476cd9f.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:13 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Deep learning for universal linear embeddings of nonlinear dynamics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLeveraging Neural Koopman Operators to Learn Continuous Representations of Dynamical Systems from Scarce Data - Anthony Frion, Lucas Drumetz, M. Mura, G. Tochon, Abdeldjalil Aissa El Bey - 2023-03-13ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)434
visibility_offModern Koopman Theory for Dynamical Systems - S. Brunton, M. Budišić, E. Kaiser, J. Kutz - 2021-02-24SIAM Rev.27363
visibility_offAutoencoding for the 'Good Dictionary' of eigen pairs of the Koopman Operator - Neranjaka Jayarathne, E. Bollt - 2023-06-08ArXiv037
visibility_offDeep learning for Koopman Operator Optimal Control. - Mostafa Al‐Gabalawy - 2021-01-06ISA transactions1311
visibility_offGeneralized Quadratic-Embeddings for Nonlinear Dynamics using Deep Learning - P. Goyal, P. Benner - 2022-11-01ArXiv753
visibility_offLearned Lifted Linearization Applied to Unstable Dynamic Systems Enabled by Koopman Direct Encoding - Jerry Ng, H. Asada - 2022-10-24IEEE Control Systems Letters112
visibility_offLearning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems - Enoch Yeung, Soumya Kundu, Nathan Oken Hodas - 2017-08-222019 American Control Conference (ACC)32617
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/6bd28606fbae3449f831248804264c9885e992f9.md b/docs/recommendations/6bd28606fbae3449f831248804264c9885e992f9.md deleted file mode 100644 index ee2b4148..00000000 --- a/docs/recommendations/6bd28606fbae3449f831248804264c9885e992f9.md +++ /dev/null @@ -1,282 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:49 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article CellBox: Interpretable Machine Learning for Perturbation Biology with Application to the Design of Cancer Combination Therapy. -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offInterpretable Machine Learning for Perturbation Biology - Bo Yuan, Ciyue Shen, Augustin Luna, Anil Korkut, D. Marks, John Ingraham, C. Sander - 2019-08-28bioRxiv6153
visibility_offAbstract 2102: Interpretable machine learning for perturbation biology - Judy Shen, Bo Yuan, Augustin Luna, Anil Korkut, D. Marks, John Ingraham, C. Sander - 2020-08-13Clinical Research (Excluding Clinical Trials)0153
visibility_offInterpretable predictions of cellular behavior - Ananya Rastogi - 2021-03-01Nature Computational Science03
visibility_offPerturbation Biology: Inferring Signaling Networks in Cellular Systems - Evan J. Molinelli, Anil Korkut, Weiqing Wang, Martin L. Miller, N. Gauthier, Xiaohong Jing, Poorvi Kaushik, Qin He, Gordon Mills, D. Solit, C. Pratilas, M. Weigt, A. Braunstein, A. Pagnani, R. Zecchina, C. Sander - 2013-08-23PLoS Computational Biology130153
visibility_offA gray box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations - Yunseong Kim, Y. Han, Corbin Hopper, Jonghoon Lee, J. Joo, Jeong-Ryeol Gong, Chun-Kyung Lee, Seong-Hoon Jang, Junsoo Kang, Taeyoung Kim, Kwang-Hyun Cho - 2024-05-01Cell Reports Methods06
visibility_offCausal Models, Prediction, and Extrapolation in Cell Line Perturbation Experiments - J. Long, Yumeng Yang, K. Do - 2022-07-20ArXiv063
visibility_offInterpretable Modeling of Single-cell perturbation Responses to Novel Drugs Using Cycle Consistence Learning - Wei Huang, Aichun Zhu, Hui Liu - 2023-11-17ArXiv00
visibility_offPredicting single-cell cellular responses to perturbations using cycle consistency learning - Wei Huang, Hui Liu - 2024-06-28Bioinformatics00
visibility_offPredicting dynamic signaling network response under unseen perturbations - Fan Zhu, Y. Guan - 2014-10-01Bioinformatics1538
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md b/docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md deleted file mode 100644 index 4ed6398c..00000000 --- a/docs/recommendations/73dd9c49f205280991826b2ea4b50344203916b4.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:24 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Learning Discrepancy Models From Experimental Data -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method - Adam Purnomo, M. Hayashibe - 2022-09-04Scientific Reports223
visibility_offSINDy vs Hard Nonlinearities and Hidden Dynamics: a Benchmarking Study - Aurelio Raffa Ugolini, Valentina Breschi, Andrea Manzoni, M. Tanelli - 2024-03-01ArXiv01
visibility_offMachine Learning and System Identification for Estimation in Physical Systems - Fredrik Bagge Carlson - 2018-12-20ArXiv58
visibility_offComposed Physics- and Data-driven System Identification for Non-autonomous Systems in Control Engineering - Ricarda-Samantha Götte, Julia Timmermann - 2021-12-152022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC)35
visibility_offSparse identification of nonlinear dynamics for model predictive control in the low-data limit - E. Kaiser, J. Kutz, S. Brunton - 2017-11-15Proceedings. Mathematical, Physical, and Engineering Sciences42563
visibility_offData-based modeling and control of nonlinear process systems using sparse identification: An overview of recent results - Fahim Abdullah, P. Christofides - 2023-03-01Comput. Chem. Eng.1275
visibility_offSINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics - Kadierdan Kaheman, J. Kutz, S. Brunton - 2020-04-05Proceedings. Mathematical, Physical, and Engineering Sciences19063
visibility_offLearning Dynamical Systems by Leveraging Data from Similar Systems - Lei Xin, Lintao Ye, G. Chiu, S. Sundaram - 2023-02-08ArXiv736
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/80744010d90c8ede052c7ac6ba8c38c9de959c6e.md b/docs/recommendations/80744010d90c8ede052c7ac6ba8c38c9de959c6e.md deleted file mode 100644 index 2bc8b9b1..00000000 --- a/docs/recommendations/80744010d90c8ede052c7ac6ba8c38c9de959c6e.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:35 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offTwo methods to approximate the Koopman operator with a reservoir computer. - Marvyn Gulina, A. Mauroy - 2020-08-24Chaos915
visibility_offExtended dynamic mode decomposition with dictionary learning using neural ordinary differential equations - H. Terao, Sho Shirasaka, Hideyuki Suzuki - 2021-10-01ArXiv526
visibility_offMultiplicative Dynamic Mode Decomposition - Nicolas Boull'e, Matthew J. Colbrook - 2024-05-08ArXiv116
visibility_offEnhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches - Ricardo Constante-Amores, Alec J. Linot, Michael D. Graham - 2023-10-10Chaos27
visibility_offExtended Dynamic Mode Decomposition with Invertible Dictionary Learning - Yuhong Jin, Lei Hou, Shun Zhong - 2024-02-01Neural networks : the official journal of the International Neural Network Society15
visibility_offPyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator - Shaowu Pan, E. Kaiser, Brian M. de Silva, J. Kutz, S. Brunton - 2023-06-22ArXiv363
visibility_offGeneralizing Dynamic Mode Decomposition: Balancing Accuracy and Expressiveness in Koopman Approximations - Masih Haseli, Jorge Cort'es - 2021-08-08ArXiv76
visibility_offHeterogeneous mixtures of dictionary functions to approximate subspace invariance in Koopman operators - Charles A. Johnson, Shara Balakrishnan, Enoch Yeung - 2022-06-27ArXiv117
visibility_offLearning Invariant Subspaces of Koopman Operators-Part 1: A Methodology for Demonstrating a Dictionary's Approximate Subspace Invariance - Charles A. Johnson, Shara Balakrishnan, Enoch Yeung - 2022-12-14ArXiv117
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/8540780e6b9422f7a1264edb70f39d3ff79bb8c1.md b/docs/recommendations/8540780e6b9422f7a1264edb70f39d3ff79bb8c1.md deleted file mode 100644 index dbb08e28..00000000 --- a/docs/recommendations/8540780e6b9422f7a1264edb70f39d3ff79bb8c1.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:05:55 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph Neural Ordinary Differential Equations -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offContinuous-Depth Neural Models for Dynamic Graph Prediction - Michael Poli, Stefano Massaroli, Clayton M. Rabideau, Junyoung Park, A. Yamashita, H. Asama, Jinkyoo Park - 2021-06-22ArXiv739
visibility_offSigned Graph Neural Ordinary Differential Equation for Modeling Continuous-time Dynamics - Lanlan Chen, K. Wu, Jian Lou, Jing Liu - 2023-12-18ArXiv018
visibility_offNeural Dynamics on Complex Networks - Chengxi Zang, Fei Wang - 2019-08-18Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining4538
visibility_offPseudo-Graph Neural Networks On Ordinary Differential Equations - Vembu B, Loghambal S - 2022-03-22Journal of Computational Mathematica00
visibility_offLearning Dynamic Graph Embeddings with Neural Controlled Differential Equations - Tiexin Qin, Benjamin Walker, Terry Lyons, Hongfei Yan, Hao Li - 2023-02-22ArXiv148
visibility_offGraph-Coupled Oscillator Networks - T. Konstantin Rusch, B. Chamberlain, J. Rowbottom, S. Mishra, M. Bronstein - 2022-02-04ArXiv, DBLP7276
visibility_offUnleashing the Potential of Fractional Calculus in Graph Neural Networks with FROND - Qiyu Kang, Kai Zhao, Qinxu Ding, Feng Ji, Xuhao Li, Wenfei Liang, Yang Song, Wee Peng Tay - 2024-04-26ArXiv39
visibility_offFirst-order PDES for Graph Neural Networks: Advection And Burgers Equation Models - Yifan Qu, O. Krzysik, H. Sterck, Omer Ege Kara - 2024-04-03ArXiv025
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md b/docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md deleted file mode 100644 index db4e5dc3..00000000 --- a/docs/recommendations/883547fdbd88552328a6615ec620f96e39c57018.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:29 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - $\dot { \boldsymbol x} = { \boldsymbol f} ({ \boldsymbol x})$ . First, we propose, for use in high-noise settings, an extensive toolkit of critically enabling extensions for the SINDy regression method, to progressively cull functionals from an over-complete library and yield a set of sparse equations that regress to the derivate $\dot { \boldsymbol {x}}$ . This toolkit includes: (regression step) weight timepoints based on estimated noise, use ensembles to estimate coefficients, and regress using FFTs; (culling step) leverage linear dependence of functionals, and restore and protect culled functionals based on Figures of Merit (FoMs). In a novel Assessment step, we define FoMs that compare model predictions to the original time-series (i.e., ${ \boldsymbol x}(t)$ rather than $\dot { \boldsymbol {x}}(t)$ ). These innovations can extract sparse governing equations and coefficients from high-noise time-series data (e.g., 300% added noise). For example, it discovers the correct sparse libraries in the Lorenz system, with median coefficient estimate errors equal to 1%−3% (for 50% noise), 6%−8% (for 100% noise), and 23%−25% (for 300% noise). The enabling modules in the toolkit are combined into a single method, but the individual modules can be tactically applied in other equation discovery methods (SINDy or not) to improve results on high-noise data. Second, we propose a technique, applicable to any model discovery method based on $\dot { \boldsymbol x} = { \boldsymbol f} ({ \boldsymbol x})$ , to assess the accuracy of a discovered model in the context of non-unique solutions due to noisy data. Currently, this non-uniqueness can obscure a discovered model’s accuracy and thus a discovery method’s effectiveness. We describe a technique that uses linear dependencies among functionals to transform a discovered model into an equivalent form that is closest to the true model, enabling more accurate assessment of a discovered model’s correctness."> - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSparsifying priors for Bayesian uncertainty quantification in model discovery - Seth M. Hirsh, D. Barajas-Solano, J. Kutz - 2021-07-05Royal Society Open Science5231
visibility_offConvergence of uncertainty estimates in Ensemble and Bayesian sparse model discovery - Liyao (Mars) Gao, Urban Fasel, S. Brunton, J. Kutz - 2023-01-30ArXiv1163
visibility_offAutomatically discovering ordinary differential equations from data with sparse regression - Kevin Egan, Weizhen Li, Rui Carvalho - 2024-01-09Communications Physics71
visibility_offSINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics - Kadierdan Kaheman, J. Kutz, S. Brunton - 2020-04-05Proceedings. Mathematical, Physical, and Engineering Sciences19063
visibility_offRapid Bayesian identification of sparse nonlinear dynamics from scarce and noisy data - Lloyd Fung, Urban Fasel, M. Juniper - 2024-02-23ArXiv037
visibility_offDiscovering governing equations from data by sparse identification of nonlinear dynamical systems - S. Brunton, J. Proctor, J. Kutz - 2015-09-11Proceedings of the National Academy of Sciences316863
visibility_offSparse identification of nonlinear dynamics in the presence of library and system uncertainty - Andrew O'Brien - 2024-01-23ArXiv00
visibility_offA Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes - Charles B. Delahunt, J. Kutz - 2021-11-08IEEE Access1631
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/893768d957f8a46f0ba5bab11e5f2e2698ef1409.md b/docs/recommendations/893768d957f8a46f0ba5bab11e5f2e2698ef1409.md deleted file mode 100644 index 9e7f748d..00000000 --- a/docs/recommendations/893768d957f8a46f0ba5bab11e5f2e2698ef1409.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:16 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Parsimony as the ultimate regularizer for physics-informed machine learning -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offA Unified Sparse Optimization Framework to Learn Parsimonious Physics-Informed Models From Data - Kathleen P. Champion, P. Zheng, A. Aravkin, S. Brunton, J. Kutz - 2019-06-25IEEE Access9463
visibility_offLearning dynamical systems from data: An introduction to physics-guided deep learning - Rose Yu, Rui Wang - 2024-06-24Proceedings of the National Academy of Sciences of the United States of America11
visibility_offSymbolic regression via neural networks. - N. Boddupalli, T. Matchen, J. Moehlis - 2023-08-01Chaos237
visibility_offMachine Learning for Partial Differential Equations - S. Brunton, J. Kutz - 2023-03-30ArXiv1463
visibility_offPhysics-Guided Deep Learning for Dynamical Systems: A survey - Rui Wang - 2021-07-02ArXiv4610
visibility_offUncertainty and Structure in Neural Ordinary Differential Equations - Katharina Ott, Michael Tiemann, Philipp Hennig - 2023-05-22ArXiv338
visibility_offPhysics-informed learning of governing equations from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05Nature Communications23212
visibility_offDeep learning of physical laws from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05ArXiv1912
visibility_offApplying physics-based loss functions to neural networks for improved generalizability in mechanics problems - Samuel J. Raymond, David B. Camarillo - 2021-04-30ArXiv1030
visibility_offPhysical laws meet machine intelligence: current developments and future directions - T. Muther, A. K. Dahaghi, F. I. Syed, Vuong Van Pham - 2022-12-05Artificial Intelligence Review1716
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/90cc86274f947b15ec3cc8c1dcfe1fc8db608e03.md b/docs/recommendations/90cc86274f947b15ec3cc8c1dcfe1fc8db608e03.md deleted file mode 100644 index 850c8753..00000000 --- a/docs/recommendations/90cc86274f947b15ec3cc8c1dcfe1fc8db608e03.md +++ /dev/null @@ -1,262 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:14 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Physical Design using Differentiable Learned Simulators -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offAccelerating Particle and Fluid Simulations with Differentiable Graph Networks for Solving Forward and Inverse Problems - Krishna Kumar, Yonjin Choi - 2023-09-23Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis31
visibility_offComplex Locomotion Skill Learning via Differentiable Physics - Yu Fang, Jiancheng Liu, Mingrui Zhang, Jiasheng Zhang, Y. Ma, Minchen Li, Yuanming Hu, Chenfanfu Jiang, Tiantian Liu - 2022-06-06ArXiv435
visibility_offLearning Airfoil Manifolds with Optimal Transport - Qiuyi Chen, Phillip E. Pope, M. Fuge - 2022-01-03AIAA SCITECH 2022 Forum420
visibility_offCompositional Generative Inverse Design - Tailin Wu, Takashi Maruyama, Long Wei, Tao Zhang, Yilun Du, Gianluca Iaccarino, J. Leskovec - 2024-01-24ArXiv1134
visibility_offAccurately Solving Physical Systems with Graph Learning - Han Shao, Tassilo Kugelstadt, Wojciech Palubicki, Jan Bender, S. Pirk, D. Michels - 2020-06-06ArXiv527
visibility_offDifferentiable Fluids with Solid Coupling for Learning and Control - Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, M. Lin - 2021-05-18DBLP2678
visibility_offLearning to design from humans: Imitating human designers through deep learning - Ayush Raina, Christopher McComb, J. Cagan - 2019-07-26ArXiv5750
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/95eee51c1cb1771e96cd182f47c90a7877461530.md b/docs/recommendations/95eee51c1cb1771e96cd182f47c90a7877461530.md deleted file mode 100644 index 4ef4570a..00000000 --- a/docs/recommendations/95eee51c1cb1771e96cd182f47c90a7877461530.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:05:56 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article GRAND: Graph Neural Diffusion -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offTIDE: Time Derivative Diffusion for Deep Learning on Graphs - Maximilian Krahn, M. Behmanesh, M. Ovsjanikov - 2022-12-05ArXiv743
visibility_offOn the Robustness of Graph Neural Diffusion to Topology Perturbations - Yang Song, Qiyu Kang, Sijie Wang, Zhao Kai, Wee Peng Tay - 2022-09-16ArXiv2330
visibility_offA Fractional Graph Laplacian Approach to Oversmoothing - Sohir Maskey, Raffaele Paolino, Aras Bacho, Gitta Kutyniok - 2023-05-22ArXiv1852
visibility_offImplicit Graph Neural Diffusion Networks: Convergence, Generalization, and Over-Smoothing - Guoji Fu, Mohammed Haroon Dupty, Yanfei Dong, Lee Wee Sun - 2023-08-07ArXiv06
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/979c112d5ed2f7653990a3591cdfccfad0dc27fd.md b/docs/recommendations/979c112d5ed2f7653990a3591cdfccfad0dc27fd.md deleted file mode 100644 index cf3ee85a..00000000 --- a/docs/recommendations/979c112d5ed2f7653990a3591cdfccfad0dc27fd.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:12 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph network simulators can learn discontinuous, rigid contact dynamics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offContactNets: Learning of Discontinuous Contact Dynamics with Smooth, Implicit Representations - Samuel Pfrommer, Mathew Halm, Michael Posa - 2020-09-23MAG, ArXiv, DBLP6618
visibility_offLearning Contact Dynamics using Physically Structured Neural Networks - Andreas Hochlehnert, Alexander Terenin, Steindór Sæmundsson, M. Deisenroth - 2021-02-22ArXiv1444
visibility_offFundamental Challenges in Deep Learning for Stiff Contact Dynamics - Mihir Parmar, Mathew Halm, Michael Posa - 2021-03-292021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)3018
visibility_offExtending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models - Yaofeng Desmond Zhong, Biswadip Dey, Amit Chakraborty - 2021-02-12ArXiv, DBLP2916
visibility_offLearning Flexible Body Collision Dynamics with Hierarchical Contact Mesh Transformer - Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, ChangSeung Woo, Ilho Kim, Seok-Woo Lee, Joon Young Yang, S. Yoon, Noseong Park - 2023-12-19ArXiv18
visibility_offLearning Physical Dynamics with Subequivariant Graph Neural Networks - Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, J. Tenenbaum, Chuang Gan - 2022-10-13ArXiv21124
visibility_offLearning rigid dynamics with face interaction graph networks - Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William F. Whitney, Alvaro Sanchez-Gonzalez, P. Battaglia, T. Pfaff - 2022-12-07ArXiv2246
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/9e20f6874feaaf7c9994f9875b1d9cab17a2fd59.md b/docs/recommendations/9e20f6874feaaf7c9994f9875b1d9cab17a2fd59.md deleted file mode 100644 index 9ddc8d42..00000000 --- a/docs/recommendations/9e20f6874feaaf7c9994f9875b1d9cab17a2fd59.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:13 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Learning Mesh-Based Simulation with Graph Networks -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offScientific Computing Algorithms to Learn Enhanced Scalable Surrogates for Mesh Physics - Brian Bartoldson, Yeping Hu, Amarjeet Saini, Jose Cadena, Yu-Hang Fu, Jie Bao, Zhijie Xu, Brenda Ng, P. Nguyen - 2023-04-01ArXiv012
visibility_offMultiScale MeshGraphNets - Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, A. Pritzel, Peter W. Battaglia - 2022-10-02ArXiv4527
visibility_offLearning to Simulate Complex Physics with Graph Networks - Alvaro Sanchez-Gonzalez, Jonathan Godwin, T. Pfaff, Rex Ying, J. Leskovec, P. Battaglia - 2020-02-21ArXiv849134
visibility_offSURF: A Generalization Benchmark for GNNs Predicting Fluid Dynamics - Stefan Künzli, Florian Grötschla, Joël Mathys, R. Wattenhofer - 2023-10-30ArXiv018
visibility_offMultiscale graph neural networks with adaptive mesh refinement for accelerating mesh-based simulations - Roberto Perera, V. Agrawal - 2024-02-14ArXiv210
visibility_offLearning rigid dynamics with face interaction graph networks - Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William F. Whitney, Alvaro Sanchez-Gonzalez, P. Battaglia, T. Pfaff - 2022-12-07ArXiv2246
visibility_offLearning Controllable Adaptive Simulation for Multi-resolution Physics - Tailin Wu, T. Maruyama, Qingqing Zhao, Gordon Wetzstein, J. Leskovec - 2023-05-01ArXiv12134
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/a3c279828af3621d2c16ac26e5900b970383f60e.md b/docs/recommendations/a3c279828af3621d2c16ac26e5900b970383f60e.md deleted file mode 100644 index 5833bf22..00000000 --- a/docs/recommendations/a3c279828af3621d2c16ac26e5900b970383f60e.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:12 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offNonlinear Data-Driven Approximation of the Koopman Operator - Dan Wilson - 2022-10-10ArXiv019
visibility_offKoopman Operator Theory for Nonlinear Dynamic Modeling using Dynamic Mode Decomposition - Gregory F. Snyder, Zhuoyuan Song - 2021-10-16ArXiv810
visibility_offModern Koopman Theory for Dynamical Systems - S. Brunton, M. Budišić, E. Kaiser, J. Kutz - 2021-02-24SIAM Rev.27363
visibility_offLearning Parametric Koopman Decompositions for Prediction and Control - Yue Guo, Milan Korda, I. Kevrekidis, Qianxiao Li - 2023-10-02ArXiv276
visibility_offKoopman Operator Dynamical Models: Learning, Analysis and Control - Petar Bevanda, Stefan Sosnowski, S. Hirche - 2021-02-04ArXiv8847
visibility_offLearning Koopman eigenfunctions for prediction and control: the transient case - Milan Korda, I. Mezić - 2018-10-20arXiv: Optimization and Control749
visibility_offOptimal Construction of Koopman Eigenfunctions for Prediction and Control - Milan Korda, I. Mezić - 2018-10-20IEEE Transactions on Automatic Control10349
visibility_offLearning Bounded Koopman Observables: Results on Stability, Continuity, and Controllability - Craig Bakker, Thiagarajan Ramachandran, W. S. Rosenthal - 2020-04-30arXiv: Dynamical Systems39
visibility_offLinear identification of nonlinear systems: A lifting technique based on the Koopman operator - A. Mauroy, Jorge M. Gonçalves - 2016-05-142016 IEEE 55th Conference on Decision and Control (CDC)9817
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/a41fe2302296a9d1eabc382415d4049905fddb36.md b/docs/recommendations/a41fe2302296a9d1eabc382415d4049905fddb36.md deleted file mode 100644 index 966330fa..00000000 --- a/docs/recommendations/a41fe2302296a9d1eabc382415d4049905fddb36.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:02 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offData-driven sparse identification of nonlinear dynamical systems using linear multistep methods - Hao-guang Chen - 2023-01-23Calcolo17
visibility_offThe Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation - Q. Du, Yiqi Gu, Haizhao Yang, Chao Zhou - 2021-03-21ArXiv1868
visibility_offKAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics - Benjamin C. Koenig, Suyong Kim, Sili Deng - 2024-07-05ArXiv02
visibility_offHierarchical deep learning of multiscale differential equation time-steppers - Yuying Liu, N. Kutz, S. Brunton - 2020-08-22Philosophical transactions. Series A, Mathematical, physical, and engineering sciences6063
visibility_offData driven nonlinear dynamical systems identification using multi-step CLDNN - Qi Teng, L. Zhang - 2019-08-19AIP Advances2037
visibility_offAI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression - Mario De Florio, I. Kevrekidis, G. Karniadakis - 2023-12-21ArXiv1127
visibility_offDetecting chaos in lineage-trees: A deep learning approach - H. Rappeport, Irit Levin Reisman, Naftali Tishby, N. Balaban - 2021-06-08ArXiv256
visibility_offModeling of dynamical systems through deep learning - P. Rajendra, V. Brahmajirao - 2020-11-22Biophysical Reviews324
visibility_offPhysics guided neural networks for modelling of non-linear dynamics - Haakon Robinson, Suraj Pawar, A. Rasheed, O. San - 2022-05-13Neural networks : the official journal of the International Neural Network Society2734
visibility_offEnhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps - Asif Hamid, Danish Rafiq, S. A. Nahvi, M. A. Bazaz - 2024-04-28ArXiv011
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/a50a2a191c98dfe045ac2139495ee80ff1338e47.md b/docs/recommendations/a50a2a191c98dfe045ac2139495ee80ff1338e47.md deleted file mode 100644 index e7bf1214..00000000 --- a/docs/recommendations/a50a2a191c98dfe045ac2139495ee80ff1338e47.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:00 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph-Coupled Oscillator Networks -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offFrom Coupled Oscillators to Graph Neural Networks: Reducing Over-smoothing via a Kuramoto Model-based Approach - Tuan Nguyen, Tan M. Nguyen, Hirotada Honda, Takashi Sano, Vinh Nguyen, Shugo Nakamura - 2023-11-06ArXiv, DBLP01
visibility_offGraph Neural Ordinary Differential Equations - Michael Poli, Stefano Massaroli, Junyoung Park, A. Yamashita, H. Asama, Jinkyoo Park - 2019-11-18ArXiv12239
visibility_offReversible and irreversible bracket-based dynamics for deep graph neural networks - A. Gruber, Kookjin Lee, N. Trask - 2023-05-24ArXiv611
visibility_offContinuous Spiking Graph Neural Networks - Nan Yin, Mengzhu Wang, Li Shen, Hitesh Laxmichand Patel, Baopu Li, Bin Gu, Huan Xiong - 2024-04-02ArXiv12
visibility_offPDE-GCN: Novel Architectures for Graph Neural Networks Motivated by Partial Differential Equations - Moshe Eliasof, E. Haber, Eran Treister - 2021-08-04ArXiv, DBLP9745
visibility_offFirst-order PDES for Graph Neural Networks: Advection And Burgers Equation Models - Yifan Qu, O. Krzysik, H. Sterck, Omer Ege Kara - 2024-04-03ArXiv025
visibility_offAnti-Symmetric DGN: a stable architecture for Deep Graph Networks - Alessio Gravina, D. Bacciu, C. Gallicchio - 2022-10-18ArXiv3226
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/aaf2145f9998f304513c0c9b530ee9f7750c6f55.md b/docs/recommendations/aaf2145f9998f304513c0c9b530ee9f7750c6f55.md deleted file mode 100644 index e04729e2..00000000 --- a/docs/recommendations/aaf2145f9998f304513c0c9b530ee9f7750c6f55.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:48 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Coupled Graph ODE for Learning Interacting System Dynamics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
visibility_offNeural Relational Inference for Interacting Systems - T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Jackson Wang, M. Welling, R. Zemel - 2018-02-13MAG, ArXiv, DBLP72988
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/acc257947545c8daa968138e317e03edc90e79b0.md b/docs/recommendations/acc257947545c8daa968138e317e03edc90e79b0.md deleted file mode 100644 index ccf3b6bc..00000000 --- a/docs/recommendations/acc257947545c8daa968138e317e03edc90e79b0.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:03 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offRandomized Physics-Informed Neural Networks for Bayesian Data Assimilation - Yifei Zong, D. Barajas-Solano, A. Tartakovsky - 2024-07-05ArXiv041
visibility_offBayesian Deep Learning for Partial Differential Equation Parameter Discovery with Sparse and Noisy Data - C. Bonneville, C. Earls - 2021-08-05ArXiv1221
visibility_offEfficient Bayesian Physics Informed Neural Networks for Inverse Problems via Ensemble Kalman Inversion - Andrew Pensoneault, Xueyu Zhu - 2023-03-13ArXiv117
visibility_offRandomized Physics-Informed Machine Learning for Uncertainty Quantification in High-Dimensional Inverse Problems - Yifei Zong, D. Barajas-Solano, A. Tartakovsky - 2023-12-11ArXiv141
visibility_offBayesian neural networks for weak solution of PDEs with uncertainty quantification - Xiaoxuan Zhang, K. Garikipati - 2021-01-13ArXiv1032
visibility_offBayesian Physics-Informed Extreme Learning Machine for Forward and Inverse PDE Problems with Noisy Data - Xu Liu, Wenjuan Yao, Wei Peng, Weien Zhou - 2022-05-14Neurocomputing1040
visibility_offLearning Functional Priors and Posteriors from Data and Physics - Xuhui Meng, Liu Yang, Zhiping Mao, J. Ferrandis, G. Karniadakis - 2021-06-08J. Comput. Phys.45127
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/ae42c0cff384495683192b06bd985cdd7a54632a.md b/docs/recommendations/ae42c0cff384495683192b06bd985cdd7a54632a.md deleted file mode 100644 index 1a5b75fe..00000000 --- a/docs/recommendations/ae42c0cff384495683192b06bd985cdd7a54632a.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:19 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Interaction Networks for Learning about Objects, Relations and Physics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offFlexible Neural Representation for Physics Prediction - Damian Mrowca, Chengxu Zhuang, E. Wang, Nick Haber, Li Fei-Fei, J. Tenenbaum, Daniel Yamins - 2018-06-01ArXiv226130
visibility_offA Compositional Object-Based Approach to Learning Physical Dynamics - Michael Chang, T. Ullman, A. Torralba, J. Tenenbaum - 2016-11-04ArXiv417127
visibility_offLearning Symbolic Physics with Graph Networks - M. Cranmer, Rui Xu, P. Battaglia, S. Ho - 2019-09-12ArXiv7768
visibility_offGraph networks as learnable physics engines for inference and control - Alvaro Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, Martin A. Riedmiller, R. Hadsell, P. Battaglia - 2018-06-04MAG, ArXiv, DBLP55062
visibility_offScalable Graph Networks for Particle Simulations - Karolis Martinkus, Aurélien Lucchi, Nathanael Perraudin - 2020-10-14MAG, ArXiv, DBLP1039
visibility_offContPhy: Continuum Physical Concept Learning and Reasoning from Videos - Zhicheng Zheng, Xin Yan, Zhenfang Chen, Jingzhou Wang, Qin Zhi Eddie Lim, J. B. Tenenbaum, Chuang Gan - 2024-02-09ArXiv117
visibility_offLearning to Simulate Complex Physics with Graph Networks - Alvaro Sanchez-Gonzalez, Jonathan Godwin, T. Pfaff, Rex Ying, J. Leskovec, P. Battaglia - 2020-02-21ArXiv849134
visibility_offDiscovering physical concepts with neural networks - Raban Iten, Tony Metger, H. Wilming, L. D. Rio, R. Renner - 2018-07-27Physical review letters35569
visibility_offUnravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems - A. Thangamuthu, Gunjan Kumar, S. Bishnoi, Ravinder Bhattoo, N. Krishnan, Sayan Ranu - 2022-11-10ArXiv1221
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/af84c6db6b5c41ca628867ff4a27566e9ca3c69e.md b/docs/recommendations/af84c6db6b5c41ca628867ff4a27566e9ca3c69e.md deleted file mode 100644 index 0890eac4..00000000 --- a/docs/recommendations/af84c6db6b5c41ca628867ff4a27566e9ca3c69e.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:05:57 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Beltrami Flow and Neural Diffusion on Graphs -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offGRAND: Graph Neural Diffusion - B. Chamberlain, J. Rowbottom, Maria I. Gorinova, Stefan Webb, Emanuele Rossi, M. Bronstein - 2021-06-21ArXiv19976
visibility_offManifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs - M. Hanik, Gabriele Steidl, C. V. Tycowicz - 2024-01-25ArXiv113
visibility_offRewiring Networks for Graph Neural Network Training Using Discrete Geometry - Jakub Bober, Anthea Monod, Emil Saucan, K. Webster - 2022-07-16ArXiv1019
visibility_offOn the Robustness of Graph Neural Diffusion to Topology Perturbations - Yang Song, Qiyu Kang, Sijie Wang, Zhao Kai, Wee Peng Tay - 2022-09-16ArXiv2330
visibility_offTIDE: Time Derivative Diffusion for Deep Learning on Graphs - Maximilian Krahn, M. Behmanesh, M. Ovsjanikov - 2022-12-05ArXiv743
visibility_offContinuous Graph Neural Networks - Louis-Pascal Xhonneux, Meng Qu, Jian Tang - 2019-12-02MAG, ArXiv, DBLP12040
visibility_offACMP: Allen-Cahn Message Passing with Attractive and Repulsive Forces for Graph Neural Networks - Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, Shi Jin - 2022-06-11ArXiv, DBLP2415
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md b/docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md deleted file mode 100644 index 2af11485..00000000 --- a/docs/recommendations/b2eb064f432557c59ce99834d7dc7817e4687271.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:18 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Sparse identification of nonlinear dynamics for model predictive control in the low-data limit -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSINDy with Control: A Tutorial - Urban Fasel, E. Kaiser, J. Kutz, Bingni W. Brunton, S. Brunton - 2021-08-302021 60th IEEE Conference on Decision and Control (CDC)4563
visibility_offSINDy vs Hard Nonlinearities and Hidden Dynamics: a Benchmarking Study - Aurelio Raffa Ugolini, Valentina Breschi, Andrea Manzoni, M. Tanelli - 2024-03-01ArXiv01
visibility_offSINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics - Kadierdan Kaheman, J. Kutz, S. Brunton - 2020-04-05Proceedings. Mathematical, Physical, and Engineering Sciences19063
visibility_offSparse Identification of Nonlinear Dynamics with Side Information (SINDy-SI) - Gabriel F. Machado, Morgan Jones - 2023-10-06ArXiv11
visibility_offMulti-objective SINDy for parameterized model discovery from single transient trajectory data - Javier A. Lemus, Benjamin Herrmann - 2024-05-14ArXiv00
visibility_offDiscovering governing equations from data by sparse identification of nonlinear dynamical systems - S. Brunton, J. Proctor, J. Kutz - 2015-09-11Proceedings of the National Academy of Sciences316863
visibility_offPySINDy: A comprehensive Python package for robust sparse system identification - A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Jared L. Callaham, Charles B. Delahunt, Kathleen P. Champion, Jean-Christophe Loiseau, J. Kutz, S. Brunton - 2021-11-12J. Open Source Softw.10963
visibility_offNonlinear Control of Networked Dynamical Systems - Megan Morrison, Nathan Kutz - 2020-06-09IEEE Transactions on Network Science and Engineering105
visibility_offDiscovering sparse interpretable dynamics from partial observations - Peter Y. Lu, Joan Ariño Bernad, M. Soljačić - 2021-07-22Communications Physics1794
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/b8db0d2a39ca356abe63a8eabbc5ed9c868f5907.md b/docs/recommendations/b8db0d2a39ca356abe63a8eabbc5ed9c868f5907.md deleted file mode 100644 index c6db1daf..00000000 --- a/docs/recommendations/b8db0d2a39ca356abe63a8eabbc5ed9c868f5907.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:05:52 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Dissecting Neural ODEs -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offDifferential Equations for Continuous-Time Deep Learning - Lars Ruthotto - 2024-01-08ArXiv21
visibility_offUnconstrained Parametrization of Dissipative and Contracting Neural Ordinary Differential Equations - D. Martinelli, C. Galimberti, I. Manchester, Luca Furieri, Giancarlo Ferrari-Trecate - 2023-04-062023 62nd IEEE Conference on Decision and Control (CDC)931
visibility_offAugmented Neural ODEs - Emilien Dupont, A. Doucet, Y. Teh - 2019-04-02ArXiv53581
visibility_offStable architectures for deep neural networks - E. Haber, Lars Ruthotto - 2017-05-09Inverse Problems64245
visibility_offTime Dependence in Non-Autonomous Neural ODEs - Jared Davis, K. Choromanski, Jacob Varley, Honglak Lee, J. Slotine, Valerii Likhosterov, Adrian Weller, A. Makadia, Vikas Sindhwani - 2020-02-26ArXiv1487
visibility_offNeural Ordinary Differential Equations - T. Chen, Yulia Rubanova, J. Bettencourt, D. Duvenaud - 2018-06-19MAG, ArXiv, DBLP394248
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/b921efbb226fe2618ec160563a2bcb5999c7c28f.md b/docs/recommendations/b921efbb226fe2618ec160563a2bcb5999c7c28f.md deleted file mode 100644 index 859ecd09..00000000 --- a/docs/recommendations/b921efbb226fe2618ec160563a2bcb5999c7c28f.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:38 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Variational Approach for Learning Markov Processes from Time Series Data -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offKernel Embedding Based Variational Approach for Low-Dimensional Approximation of Dynamical Systems - Wenchong Tian, Hao Wu - 2020-08-07Computational Methods in Applied Mathematics1123
visibility_offDeep learning Markov and Koopman models with physical constraints - Andreas Mardt, Luca Pasquali, Frank No'e, Hao Wu - 2019-12-16MAG, ArXiv, DBLP2523
visibility_offLearning minimal representations of stochastic processes with variational autoencoders - Gabriel Fern'andez-Fern'andez, Carlo Manzo, M. Lewenstein, A. Dauphin, Gorka Muñoz-Gil - 2023-07-21ArXiv093
visibility_offA Novel Variational Family for Hidden Nonlinear Markov Models - Daniel Hernandez, Antonio Khalil Moretti, Ziqiang Wei, S. Saxena, J. Cunningham, L. Paninski - 2018-09-27ArXiv1665
visibility_offFitting timeseries by continuous-time Markov chains: A quadratic programming approach - D. Crommelin, E. Vanden-Eijnden - 2006-09-20J. Comput. Phys.6364
visibility_offVariational Inference for Continuous-Time Switching Dynamical Systems - Lukas Kohs, Bastian Alt, H. Koeppl - 2021-09-29ArXiv628
visibility_offOn Entropic Learning from Noisy Time Series in the Small Data Regime - Davide Bassetti, Lukáš Pospíšil, I. Horenko - 2024-06-28Entropy026
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/bcbcc2e1af8bcf6b07edf866be95116a8ed0bf91.md b/docs/recommendations/bcbcc2e1af8bcf6b07edf866be95116a8ed0bf91.md deleted file mode 100644 index 32a30db7..00000000 --- a/docs/recommendations/bcbcc2e1af8bcf6b07edf866be95116a8ed0bf91.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-05-27 07:02:58 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article UniTS: Building a Unified Time Series Model -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offTimer: Transformers for Time Series Analysis at Scale - Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, Mingsheng Long - 2024-02-04ArXiv265
visibility_offOne Fits All: Universal Time Series Analysis by Pretrained LM and Specially Designed Adaptors - Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin - 2023-11-24ArXiv16
visibility_offMOMENT: A Family of Open Time-series Foundation Models - Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, Artur Dubrawski - 2024-02-06ArXiv57
visibility_offUnified Training of Universal Time Series Forecasting Transformers - Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, Doyen Sahoo - 2024-02-04ArXiv1021
visibility_offLag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting - Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos, Rishika Bhagwatkar, Marin Bilovs, Hena Ghonia, N. Hassen, Anderson Schneider, Sahil Garg, Alexandre Drouin, Nicolas Chapados, Yuriy Nevmyvaka, I. Rish - 2023-10-12ArXiv739
visibility_offUniversal Time-Series Representation Learning: A Survey - Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim, Byunghyun Kim, Jae-Gil Lee - 2024-01-08ArXiv46
visibility_offOne Fits All: Power General Time Series Analysis by Pretrained LM - Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin - 2023-02-23DBLP, ArXiv9216
visibility_offChronos: Learning the Language of Time Series - Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, Yuyang Wang - 2024-03-12ArXiv1018
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/be8d39424a9010bfc0805385cc91edee383c2e24.md b/docs/recommendations/be8d39424a9010bfc0805385cc91edee383c2e24.md deleted file mode 100644 index c872f192..00000000 --- a/docs/recommendations/be8d39424a9010bfc0805385cc91edee383c2e24.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:05:58 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Message Passing Neural PDE Solvers -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offBetter Neural PDE Solvers Through Data-Free Mesh Movers - Peiyan Hu, Yue Wang, Zhi-Ming Ma - 2023-12-09ArXiv23
visibility_offConnections Between Numerical Algorithms for PDEs and Neural Networks - Tobias Alt, K. Schrader, M. Augustin, Pascal Peter, J. Weickert - 2021-07-30Journal of Mathematical Imaging and Vision1367
visibility_offTranslating Numerical Concepts for PDEs into Neural Architectures - Tobias Alt, Pascal Peter, J. Weickert, K. Schrader - 2021-03-29ArXiv667
visibility_offResNet After All? Neural ODEs and Their Numerical Solution - Katharina Ott, P. Katiyar, Philipp Hennig, M. Tiemann - 2020-07-30ArXiv2638
visibility_offAutoregressive Renaissance in Neural PDE Solvers - Yolanne Yi Ran Lee - 2023-10-30ArXiv11
visibility_offLearning time-dependent PDE solver using Message Passing Graph Neural Networks - Pourya Pilva, A. Zareei - 2022-04-15ArXiv511
visibility_offEfficient Neural PDE-Solvers using Quantization Aware Training - W.V.S.O. van den Dool, Tijmen Blankevoort, M. Welling, Yuki M. Asano - 2023-08-142023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)388
visibility_offDiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization - Rishikesh Ranade, C. Hill, Jay Pathak - 2020-05-17ArXiv9110
visibility_offSampling-based Distributed Training with Message Passing Neural Network - P. Kakka, S. Nidhan, Rishikesh Ranade, J. MacArt - 2024-02-23ArXiv010
visibility_offEnhancing Neural Network Differential Equation Solvers - Matthew J. H. Wright - 2022-12-28ArXiv00
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/bf657b5049c1a5c839369d3948ffb4c0584cd1d2.md b/docs/recommendations/bf657b5049c1a5c839369d3948ffb4c0584cd1d2.md deleted file mode 100644 index dd1dfcfa..00000000 --- a/docs/recommendations/bf657b5049c1a5c839369d3948ffb4c0584cd1d2.md +++ /dev/null @@ -1,153 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:11 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Hamiltonian Systems and Transformation in Hilbert Space. -

- - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md b/docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md deleted file mode 100644 index e8ef3be1..00000000 --- a/docs/recommendations/c0fc3882a9976f6a9cdc3a724bce184b786503da.md +++ /dev/null @@ -1,263 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:32 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article A Unified Framework for Sparse Relaxed Regularized Regression: SR3 -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - $\ell _1$ -norm as the loss function for the residual error and utilizes a generalized nonconvex penalty for sparsity inducing. The $\ell _1$ -loss is less sensitive to outliers in the measurements than the popular $\ell _2$-loss, while the nonconvex penalty has the capability of ameliorating the bias problem of the popular convex LASSO penalty and thus can yield more accurate recovery. To solve this nonconvex and nonsmooth minimization formulation efficiently, we propose a first-order algorithm based on alternating direction method of multipliers. A smoothing strategy on the $\ell _1$ -loss function has been used in deriving the new algorithm to make it convergent. Further, a sufficient condition for the convergence of the new algorithm has been provided for generalized nonconvex regularization. In comparison with several state-of-the-art algorithms, the new algorithm showed better performance in numerical experiments in recovering sparse signals and compressible images. The new algorithm scales well for large-scale problems, as often encountered in image processing."> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offRank-one Convexification for Sparse Regression - Alper Atamtürk, A. Gómez - 2019-01-29ArXiv4935
visibility_offSparse Recovery via Partial Regularization: Models, Theory and Algorithms - Zhaosong Lu, Xiaorui Li - 2015-11-23ArXiv3532
visibility_offStructured Regularizers for High-Dimensional Problems: Statistical and Computational Issues - M. Wainwright - 2014-01-035894
visibility_offEfficient and Robust Recovery of Sparse Signal and Image Using Generalized Nonconvex Regularization - Fei Wen, L. Pei, Yuan Yang, Wenxian Yu, Peilin Liu - 2017-03-23IEEE Transactions on Computational Imaging8330
visibility_offRegularizers for structured sparsity - C. Micchelli, Jean Morales, M. Pontil - 2010-10-04Advances in Computational Mathematics7970
visibility_offRegularizers for structured sparsity - C. Micchelli, Jean Morales, M. Pontil - 2010-10-04Advances in Computational Mathematics7970
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md b/docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md deleted file mode 100644 index bc795129..00000000 --- a/docs/recommendations/c3c94ccc094dcf546e8e31c9a42506302e837524.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:57 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article AZ-whiteness test: a test for signal uncorrelation on spatio-temporal graphs -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offAZ-whiteness test: a test for uncorrelated noise on spatio-temporal graphs - Daniele Zambon, C. Alippi - 2022-04-23ArXiv549
visibility_offA Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection - Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, C. Alippi, G. I. Webb, Irwin King, Shirui Pan - 2023-07-07ArXiv6149
visibility_offGraph construction on complex spatiotemporal data for enhancing graph neural network-based approaches - Stefan Bloemheuvel, J. Hoogen, Martin Atzmueller - 2023-09-25International Journal of Data Science and Analytics06
visibility_offTime-Varying Signals Recovery Via Graph Neural Networks - Jhon A. Castro-Correa, Jhony H. Giraldo, Anindya Mondal, M. Badiey, T. Bouwmans, Fragkiskos D. Malliaros - 2023-02-22ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)442
visibility_offGraph-Time Convolutional Neural Networks: Architecture and Theoretical Analysis - Mohammad Sabbaqi, E. Isufi - 2022-06-30IEEE Transactions on Pattern Analysis and Machine Intelligence720
visibility_offMultivariate Time Series Forecasting With Dynamic Graph Neural ODEs - Ming Jin, Yu Zheng, Yuanhao Li, Siheng Chen, B. Yang, Shirui Pan - 2022-02-17IEEE Transactions on Knowledge and Data Engineering5442
visibility_offDynamic Graph Learning with Long and Short-Term for Multivariate Time Series Anomaly Detection - Yuyin Tian, Rong Gao, Lingyu Yan, Donghua Liu, Zhiwei Ye - 2023-09-072023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)03
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/c529f5b08675f787cdcc094ee495239592339f82.md b/docs/recommendations/c529f5b08675f787cdcc094ee495239592339f82.md deleted file mode 100644 index 7fc1e114..00000000 --- a/docs/recommendations/c529f5b08675f787cdcc094ee495239592339f82.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:23 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Learning to Simulate Complex Physics with Graph Networks -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLearning to Simulate Unseen Physical Systems with Graph Neural Networks - Ce Yang, Weihao Gao, Di Wu, Chong Wang - 2022-01-28ArXiv215
visibility_offAccurately Solving Physical Systems with Graph Learning - Han Shao, Tassilo Kugelstadt, Wojciech Palubicki, Jan Bender, S. Pirk, D. Michels - 2020-06-06ArXiv527
visibility_offSimulating Liquids with Graph Networks - Jonathan Klimesch, Philipp Holl, Nils Thuerey - 2022-03-14ArXiv87
visibility_offScalable Graph Networks for Particle Simulations - Karolis Martinkus, Aurélien Lucchi, Nathanael Perraudin - 2020-10-14MAG, ArXiv, DBLP1039
visibility_offLearning Mesh-Based Simulation with Graph Networks - T. Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, P. Battaglia - 2020-10-07ArXiv55946
visibility_offUnravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems - A. Thangamuthu, Gunjan Kumar, S. Bishnoi, Ravinder Bhattoo, N. Krishnan, Sayan Ranu - 2022-11-10ArXiv1221
visibility_offMultiScale MeshGraphNets - Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, A. Pritzel, Peter W. Battaglia - 2022-10-02ArXiv4527
visibility_offHamiltonian Graph Networks with ODE Integrators - Alvaro Sanchez-Gonzalez, V. Bapst, Kyle Cranmer, P. Battaglia - 2019-09-27ArXiv16146
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md b/docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md deleted file mode 100644 index 77d69946..00000000 --- a/docs/recommendations/ccea298edb788edf821aef58f0952c3e8debc25a.md +++ /dev/null @@ -1,237 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:42 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Graph Deep Learning for Time Series Forecasting -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offTimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting - Nancy R. Xu, Chrysoula Kosma, M. Vazirgiannis - 2023-07-27ArXiv054
visibility_offBalanced Graph Structure Learning for Multivariate Time Series Forecasting - Weijun Chen, Yanze Wang, Chengshuo Du, Zhenglong Jia, Feng Liu, Ran Chen - 2022-01-24ArXiv010
visibility_offSparse Graph Learning from Spatiotemporal Time Series - Andrea Cini, Daniele Zambon, C. Alippi - 2022-05-26J. Mach. Learn. Res.1149
visibility_offForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks - Wanlin Cai, Kun Wang, Hao Wu, Xiaoxu Chen, Yuankai Wu - 2024-05-28ArXiv03
visibility_offConnecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks - Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang - 2020-05-24Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining93854
visibility_offDeepHGNN: Study of Graph Neural Network based Forecasting Methods for Hierarchically Related Multivariate Time Series - Abishek Sriramulu, Nicolas Fourrier, Christoph Bergmeir - 2024-05-29ArXiv04
visibility_offFourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective - Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbin Cao, Zhendong Niu - 2023-11-10ArXiv254
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/d39ad86d4617e069d89b6d62c760c2ba268a2b85.md b/docs/recommendations/d39ad86d4617e069d89b6d62c760c2ba268a2b85.md deleted file mode 100644 index dabcee9f..00000000 --- a/docs/recommendations/d39ad86d4617e069d89b6d62c760c2ba268a2b85.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:02 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Continuous PDE Dynamics Forecasting with Implicit Neural Representations -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLearning Space-Time Continuous Neural PDEs from Partially Observed States - V. Iakovlev, Markus Heinonen, H. Lähdesmäki - 2023-07-09ArXiv048
visibility_offLearning data-driven discretizations for partial differential equations - Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, M. Brenner - 2018-08-15Proceedings of the National Academy of Sciences of the United States of America43065
visibility_offA Deep Learning Approach for Predicting Spatiotemporal Dynamics From Sparsely Observed Data - Priyabrata Saha, S. Mukhopadhyay - 2020-12-01IEEE Access445
visibility_offModeling Spatially Varying Physical Dynamics for Spatiotemporal Predictive Learning - Yijun Lin, Yao-Yi Chiang - 2023-11-13Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems02
visibility_offLearning PDE Solution Operator for Continuous Modeling of Time-Series - Yesom Park, Jaemoo Choi, Changyeon Yoon, Changhoon Song, Myung-joo Kang - 2023-02-02ArXiv224
visibility_offSpace-Time Continuous PDE Forecasting using Equivariant Neural Fields - David M. Knigge, David R. Wessels, Riccardo Valperga, Samuele Papa, J. Sonke, E. Gavves, E. J. Bekkers - 2024-06-10ArXiv156
visibility_offAROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields - Louis Serrano, Thomas X. Wang, E. L. Naour, Jean-Noël Vittaut, P. Gallinari - 2024-06-04ArXiv048
visibility_offSTENCIL-NET for equation-free forecasting from data - S. Maddu, D. Sturm, B. Cheeseman, Christian L. Müller, I. Sbalzarini - 2023-08-07Scientific Reports338
visibility_offNeuralPDE: Modelling Dynamical Systems from Data - Andrzej Dulny, A. Hotho, Anna Krause - 2021-11-15ArXiv853
visibility_offSTENCIL-NET: Data-driven solution-adaptive discretization of partial differential equations - S. Maddu, D. Sturm, B. Cheeseman, Christian L. Müller, I. Sbalzarini - 2021-01-15ArXiv738
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md b/docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md deleted file mode 100644 index 65de8c14..00000000 --- a/docs/recommendations/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:36 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offGraph Time-series Modeling in Deep Learning: A Survey - Hongjie Chen, Hoda Eldardiry - 2023-12-23ACM Transactions on Knowledge Discovery from Data114
visibility_offTimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting - Nancy R. Xu, Chrysoula Kosma, M. Vazirgiannis - 2023-07-27ArXiv054
visibility_offGraph Anomaly Detection in Time Series: A Survey - Thi Kieu Khanh Ho, Ali Karami, N. Armanfard - 2023-01-31ArXiv615
visibility_offFourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective - Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbin Cao, Zhendong Niu - 2023-11-10ArXiv254
visibility_offMGADN: A Multi-task Graph Anomaly Detection Network for Multivariate Time Series - Wei-Shu Xiong, Xiaochen (Michael) Sun - 2022-11-22ArXiv12
visibility_offMultivariate Time Series Anomaly Detection via Dynamic Graph Forecasting - Katrina Chen, M. Feng, T. Wirjanto - 2023-02-04ArXiv322
visibility_offEdge Conditional Node Update Graph Neural Network for Multi-variate Time Series Anomaly Detection - H. Jo, Seong-Whan Lee - 2024-01-25Inf. Sci.01
visibility_offCorrelation-aware Spatial-Temporal Graph Learning for Multivariate Time-series Anomaly Detection - Yu Zheng, Huan Yee Koh, Ming Jin, Lianhua Chi, Khoa T. Phan, Shirui Pan, Yi-Ping Phoebe Chen, Wei Xiang - 2023-07-17IEEE transactions on neural networks and learning systems818
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/d6fdd8fc0c5fc052d040687e72638fb4297661cc.md b/docs/recommendations/d6fdd8fc0c5fc052d040687e72638fb4297661cc.md deleted file mode 100644 index 5cc8a35e..00000000 --- a/docs/recommendations/d6fdd8fc0c5fc052d040687e72638fb4297661cc.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:10 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Learning rigid dynamics with face interaction graph networks -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLearning Flexible Body Collision Dynamics with Hierarchical Contact Mesh Transformer - Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, ChangSeung Woo, Ilho Kim, Seok-Woo Lee, Joon Young Yang, S. Yoon, Noseong Park - 2023-12-19ArXiv18
visibility_offLearning Mesh-Based Simulation with Graph Networks - T. Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, P. Battaglia - 2020-10-07ArXiv55946
visibility_offLearning rigid-body simulators over implicit shapes for large-scale scenes and vision - Yulia Rubanova, Tatiana Lopez-Guevara, Kelsey R. Allen, William F. Whitney, Kimberly L. Stachenfeld, Tobias Pfaff - 2024-05-22ArXiv17
visibility_offLearning Physical Dynamics with Subequivariant Graph Neural Networks - Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, J. Tenenbaum, Chuang Gan - 2022-10-13ArXiv21124
visibility_offActive Learning of Neural Collision Handler for Complex 3D Mesh Deformations - Qingyang Tan, Zherong Pan, Breannan Smith, Takaaki Shiratori, Dinesh Manocha - 2021-10-08ArXiv695
visibility_offLearning to Simulate Complex Physics with Graph Networks - Alvaro Sanchez-Gonzalez, Jonathan Godwin, T. Pfaff, Rex Ying, J. Leskovec, P. Battaglia - 2020-02-21ArXiv849134
visibility_offMeshGraphNetRP: Improving Generalization of GNN-based Cloth Simulation - Emmanuel Ian Libao, Myeongjin Lee, Sumin Kim, Sung-Hee Lee - 2023-11-15Proceedings of the 16th ACM SIGGRAPH Conference on Motion, Interaction and Games11
visibility_offN‐Cloth: Predicting 3D Cloth Deformation with Mesh‐Based Networks - Yudi Li, Min Tang, Yun-bo Yang, Zi Huang, Ruofeng Tong, Shuangcai Yang, Yao Li, Dinesh Manocha - 2021-12-13Computer Graphics Forum1695
visibility_offPhysGraph: Physics-Based Integration Using Graph Neural Networks - Oshri Halimi, E.T Larionov, Zohar Barzelay, Philipp Herholz, Tuur Stuyck - 2023-01-27ArXiv312
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/d8d8e2c04ca47bd628bd2a499e03ad7cd29633da.md b/docs/recommendations/d8d8e2c04ca47bd628bd2a499e03ad7cd29633da.md deleted file mode 100644 index 65acf475..00000000 --- a/docs/recommendations/d8d8e2c04ca47bd628bd2a499e03ad7cd29633da.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:36 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offVariational encoding of complex dynamics. - Carlos X. Hernández, H. Wayment-Steele, Mohammad M. Sultan, B. Husic, V. Pande - 2017-11-23Physical review. E135103
visibility_offAuthor Correction: VAMPnets for deep learning of molecular kinetics - Andreas Mardt, Luca Pasquali, Hao Wu, F. Noé - 2018-10-22Nature Communications2461
visibility_offUnderstanding recent deep‐learning techniques for identifying collective variables of molecular dynamics - W. Zhang, Christof Schutte - 2023-07-01PAMM228
visibility_offCapabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems - Wei Chen, Hythem Sidky, Andrew L. Ferguson - 2019-06-02ArXiv3135
visibility_offAutoencoders for dimensionality reduction in molecular dynamics: Collective variable dimension, biasing, and transition states. - Zineb Belkacemi, M. Bianciotto, H. Minoux, T. Lelièvre, G. Stoltz, P. Gkeka - 2023-06-05The Journal of chemical physics337
visibility_offOperator Autoencoders: Learning Physical Operations on Encoded Molecular Graphs - Willis Hoke, D. Shea, S. Casey - 2021-05-26ArXiv08
visibility_offNonlinear Discovery of Slow Molecular Modes using Hierarchical Dynamics Encoders - Wei Chen, Hythem Sidky, Andrew L. Ferguson - 2019-02-09The Journal of chemical physics7735
visibility_offUsing an Autoencoder for Dimensionality Reduction in Quantum Dynamics - S. Reiter, T. Schnappinger, R. Vivie-Riedle - 2019-09-17MAG, DBLP227
visibility_offVAMPnets for deep learning of molecular kinetics - Andreas Mardt, Luca Pasquali, Hao Wu, F. Noé - 2017-10-16Nature Communications46361
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/e0ee02a573b3d83fec55ed5d7c80f1afa055a7b4.md b/docs/recommendations/e0ee02a573b3d83fec55ed5d7c80f1afa055a7b4.md deleted file mode 100644 index 9d536681..00000000 --- a/docs/recommendations/e0ee02a573b3d83fec55ed5d7c80f1afa055a7b4.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:06:15 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Constraint-based graph network simulator -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offHamiltonian Graph Networks with ODE Integrators - Alvaro Sanchez-Gonzalez, V. Bapst, Kyle Cranmer, P. Battaglia - 2019-09-27ArXiv16146
visibility_offAccurately Solving Physical Systems with Graph Learning - Han Shao, Tassilo Kugelstadt, Wojciech Palubicki, Jan Bender, S. Pirk, D. Michels - 2020-06-06ArXiv527
visibility_offLearning to Simulate Complex Physics with Graph Networks - Alvaro Sanchez-Gonzalez, Jonathan Godwin, T. Pfaff, Rex Ying, J. Leskovec, P. Battaglia - 2020-02-21ArXiv849134
visibility_offLearning the dynamics of particle-based systems with Lagrangian graph neural networks - Ravinder Bhattoo, Sayan Ranu, N. Krishnan - 2022-09-03Machine Learning: Science and Technology1321
visibility_offTowards Complex Dynamic Physics System Simulation with Graph Neural ODEs - Guangsi Shi, Daokun Zhang, Ming Jin, Shirui Pan - 2023-05-21ArXiv218
visibility_offLearning Mesh-Based Simulation with Graph Networks - T. Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, P. Battaglia - 2020-10-07ArXiv55946
visibility_offDifferentiable Physics Simulation - Junbang Liang, M. Lin - 2020-02-261378
visibility_offTowards complex dynamic physics system simulation with graph neural ordinary equations - Guangsi Shi, Daokun Zhang, Ming Jin, Shirui Pan, Phillp S. Yu - 2024-04-01Neural networks : the official journal of the International Neural Network Society03
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md b/docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md deleted file mode 100644 index 79cda625..00000000 --- a/docs/recommendations/e2a83369383aff37224170c1ae3d3870d5d9e419.md +++ /dev/null @@ -1,225 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:39 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Taming Local Effects in Graph-based Spatiotemporal Forecasting -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offSparse Graph Learning from Spatiotemporal Time Series - Andrea Cini, Daniele Zambon, C. Alippi - 2022-05-26J. Mach. Learn. Res.1149
visibility_offUnified Spatio-Temporal Graph Neural Networks: Data-Driven Modeling for Social Science - Yifan Li, Yu Lin, Y. Gao, L. Khan - 2022-07-182022 International Joint Conference on Neural Networks (IJCNN)011
visibility_offForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks - Wanlin Cai, Kun Wang, Hao Wu, Xiaoxu Chen, Yuankai Wu - 2024-05-28ArXiv03
visibility_offFourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective - Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbin Cao, Zhendong Niu - 2023-11-10ArXiv254
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md b/docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md deleted file mode 100644 index 31769f01..00000000 --- a/docs/recommendations/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:52 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offOnly the Curve Shape Matters: Training Foundation Models for Zero-Shot Multivariate Time Series Forecasting through Next Curve Shape Prediction - Cheng Feng, Long Huang, Denis Krompass - 2024-02-12ArXiv31
visibility_offChronos: Learning the Language of Time Series - Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, Yuyang Wang - 2024-03-12ArXiv2318
visibility_offLag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting - Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos, Rishika Bhagwatkar, Marin Bilovs, Hena Ghonia, N. Hassen, Anderson Schneider, Sahil Garg, Alexandre Drouin, Nicolas Chapados, Yuriy Nevmyvaka, I. Rish - 2023-10-12ArXiv1340
visibility_offMulti-Patch Prediction: Adapting LLMs for Time Series Representation Learning - Yuxuan Bian, Xu Ju, Jiangtong Li, Zhijian Xu, Dawei Cheng, Qiang Xu - 2024-02-07ArXiv45
visibility_offOne Fits All: Universal Time Series Analysis by Pretrained LM and Specially Designed Adaptors - Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin - 2023-11-24ArXiv27
visibility_offMultiCast: Zero-Shot Multivariate Time Series Forecasting Using LLMs - Georgios Chatzigeorgakidis, Konstantinos Lentzos, Dimitrios Skoutas - 2024-05-132024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)07
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md b/docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md deleted file mode 100644 index a16e4992..00000000 --- a/docs/recommendations/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8.md +++ /dev/null @@ -1,273 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:30 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Learning sparse nonlinear dynamics via mixed-integer optimization -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offAutomatically discovering ordinary differential equations from data with sparse regression - Kevin Egan, Weizhen Li, Rui Carvalho - 2024-01-09Communications Physics71
visibility_offDiscovering governing equations from data by sparse identification of nonlinear dynamical systems - S. Brunton, J. Proctor, J. Kutz - 2015-09-11Proceedings of the National Academy of Sciences316863
visibility_offSparse Identification of Nonlinear Dynamics with Side Information (SINDy-SI) - Gabriel F. Machado, Morgan Jones - 2023-10-06ArXiv11
visibility_offPySINDy: A comprehensive Python package for robust sparse system identification - A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Jared L. Callaham, Charles B. Delahunt, Kathleen P. Champion, Jean-Christophe Loiseau, J. Kutz, S. Brunton - 2021-11-12J. Open Source Softw.10963
visibility_offPhysics-informed learning of governing equations from scarce data - Zhao Chen, Yang Liu, Hao Sun - 2020-05-05Nature Communications23412
visibility_offPySINDy: A Python package for the Sparse Identification of Nonlinear Dynamics from Data. - Brian M. de Silva, Kathleen P. Champion, M. Quade, Jean-Christophe Loiseau, J. Kutz, S. Brunton - 2020-04-17arXiv: Dynamical Systems4663
visibility_offSINDy with Control: A Tutorial - Urban Fasel, E. Kaiser, J. Kutz, Bingni W. Brunton, S. Brunton - 2021-08-302021 60th IEEE Conference on Decision and Control (CDC)4563
visibility_offSparse learning of stochastic dynamical equations. - L. Boninsegna, F. Nüske, C. Clementi - 2017-12-06The Journal of chemical physics19044
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md b/docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md deleted file mode 100644 index b087071c..00000000 --- a/docs/recommendations/f45f85fa1beaa795c24c4ff86f1f2deece72252f.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:16:47 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article A decoder-only foundation model for time-series forecasting -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offLag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting - Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos, Rishika Bhagwatkar, Marin Bilovs, Hena Ghonia, N. Hassen, Anderson Schneider, Sahil Garg, Alexandre Drouin, Nicolas Chapados, Yuriy Nevmyvaka, I. Rish - 2023-10-12ArXiv1340
visibility_offTime-LLM: Time Series Forecasting by Reprogramming Large Language Models - Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, X. Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, Qingsong Wen - 2023-10-03ArXiv1119
visibility_offIn-context Time Series Predictor - Jiecheng Lu, Yan Sun, Shihao Yang - 2024-05-23ArXiv01
visibility_offLLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters - Ching Chang, Wenjie Peng, Tien-Fu Chen - 2023-08-16ArXiv152
visibility_offLSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term Prompting - Haoxin Liu, Zhiyuan Zhao, Jindong Wang, Harshavardhan Kamarthi, B. A. Prakash - 2024-02-25ArXiv67
visibility_offOne Fits All: Universal Time Series Analysis by Pretrained LM and Specially Designed Adaptors - Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin - 2023-11-24ArXiv27
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/fa352e8e4d9ec2f4b66965dd9cea75167950152a.md b/docs/recommendations/fa352e8e4d9ec2f4b66965dd9cea75167950152a.md deleted file mode 100644 index e3c73263..00000000 --- a/docs/recommendations/fa352e8e4d9ec2f4b66965dd9cea75167950152a.md +++ /dev/null @@ -1,249 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-07-22 06:07:00 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offPhysics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations - M. Raissi, P. Perdikaris, G. Karniadakis - 2019-02-01J. Comput. Phys.7319127
visibility_offPhysics Informed Extreme Learning Machine (PIELM) - A rapid method for the numerical solution of partial differential equations - Vikas Dwivedi, B. Srinivasan - 2019-07-08ArXiv13014
visibility_offMulti-Step Physics-Informed Deep Operator Neural Network for Directly Solving Partial Differential Equations - Jing Wang, Yubo Li, Anping Wu, Zheng Chen, Jun Huang, Qingfeng Wang, Feng Liu - 2024-06-25Applied Sciences06
visibility_offVariational Physics-Informed Neural Networks For Solving Partial Differential Equations - E. Kharazmi, Z. Zhang, G. Karniadakis - 2019-11-27ArXiv185127
visibility_offDeep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations - M. Raissi - 2018-01-20J. Mach. Learn. Res.65824
visibility_offSolving differential equations using physics informed deep learning: a hand-on tutorial with benchmark tests - H. Baty, L. Baty - 2023-02-23ArXiv314
visibility_offUnderstanding on Physics-Informed DeepONet - Sang-Min Lee - 2024-01-31Journal of the Korea Academia-Industrial cooperation Society00
visibility_offPhysics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations - Benwei Wu, O. Hennigh, J. Kautz, S. Choudhry, Wonmin Byeon - 2022-02-24ArXiv491
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md b/docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md deleted file mode 100644 index 692e6334..00000000 --- a/docs/recommendations/ff1f1cf9df8c413ec7345da7604ba28597da5b90.md +++ /dev/null @@ -1,261 +0,0 @@ ---- -hide: - - navigation ---- - -# - - - - - - -

- This page was last updated on 2024-08-08 13:17:00 UTC -

- -
-

- -

-
- -

-

- Recommendations for the article UNITS: A Unified Multi-Task Time Series Model -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AbstractTitleAuthorsPublication DateJournal/ ConferenceCitation countHighest h-index
visibility_offTimer: Generative Pre-trained Transformers Are Large Time Series Models - Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, Mingsheng Long - 2024-02-04ArXiv665
visibility_offLarge Pre-trained time series models for cross-domain Time series analysis tasks - Harshavardhan Kamarthi, B. A. Prakash - 2023-11-19ArXiv27
visibility_offUniversal Time-Series Representation Learning: A Survey - Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim, Byunghyun Kim, Jae-Gil Lee - 2024-01-08ArXiv56
visibility_offOne Fits All: Universal Time Series Analysis by Pretrained LM and Specially Designed Adaptors - Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin - 2023-11-24ArXiv27
visibility_offChronos: Learning the Language of Time Series - Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, Yuyang Wang - 2024-03-12ArXiv2318
visibility_offUnified Training of Universal Time Series Forecasting Transformers - Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, Doyen Sahoo - 2024-02-04ArXiv2622
visibility_offBidirectional Generative Pre-training for Improving Time Series Representation Learning - Ziyang Song, Qincheng Lu, He Zhu, Yue Li - 2024-02-14ArXiv12
AbstractTitleAuthorsPublication DateJournal/ConferenceCitation countHighest h-index
-

- - - - - - \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index 0021ef57..5006699b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,7 @@ astroid==3.0.0 Babel==2.14.0 beautifulsoup4==4.12.3 +bibtexparser==1.4.1 blinker==1.6.3 certifi==2024.7.4 charset-normalizer==3.3.2 @@ -56,6 +57,7 @@ python-dateutil==2.9.0.post0 pytz==2024.1 PyYAML==6.0.1 pyyaml_env_tag==0.1 +pyzotero==1.5.20 regex==2023.12.25 requests==2.31.0 seaborn==0.13.2 diff --git a/site/Symbolic regression/index.html b/site/Symbolic regression/index.html index bc70b963..b29d0005 100644 --- a/site/Symbolic regression/index.html +++ b/site/Symbolic regression/index.html @@ -451,7 +451,7 @@

Symbolic regression

- This page was last updated on 2024-08-05 09:00:19 UTC + This page was last updated on 2024-08-19 06:05:48 UTC

@@ -515,9 +515,9 @@

Manually curated articles on Symbolic regr S. Brunton, J. Proctor, J. Kutz 2015-09-11 - Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences - 3159 - 63 + Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences of the United States of America + 3190 + 65 open_in_new @@ -536,7 +536,7 @@

Manually curated articles on Symbolic regr 2021-02-24 Nature Communications - 84 + 85 23 @@ -556,8 +556,8 @@

Manually curated articles on Symbolic regr 2019-03-29 Proceedings of the National Academy of Sciences of the United States of America - 595 - 63 + 603 + 65 open_in_new @@ -576,8 +576,8 @@

Manually curated articles on Symbolic regr 2016-08-18 Nature Communications - 446 - 63 + 448 + 65 open_in_new @@ -596,8 +596,8 @@

Manually curated articles on Symbolic regr 2017-11-15 Proceedings of the Royal Society A, Proceedings. Mathematical, Physical, and Engineering Sciences - 425 - 63 + 428 + 65 open_in_new @@ -615,9 +615,9 @@

Manually curated articles on Symbolic regr N. Mangan, S. Brunton, J. Proctor, J. Kutz 2016-05-26 - IEEE Transactions on Molecular Biological and Multi-Scale Communications, IEEE Transactions on Molecular, Biological and Multi-Scale Communications - 314 - 63 + IEEE Transactions on Molecular, Biological and Multi-Scale Communications, IEEE Transactions on Molecular Biological and Multi-Scale Communications + 317 + 65 open_in_new @@ -636,8 +636,8 @@

Manually curated articles on Symbolic regr 2020-04-05 Proceedings of the Royal Society A, Proceedings. Mathematical, Physical, and Engineering Sciences - 190 - 63 + 194 + 65 open_in_new @@ -675,9 +675,9 @@

Manually curated articles on Symbolic regr Kadierdan Kaheman, E. Kaiser, B. Strom, J. Kutz, S. Brunton 2019-09-18 - ArXiv, arXiv.org - 31 - 63 + arXiv.org, ArXiv + 32 + 65 open_in_new @@ -696,8 +696,8 @@

Manually curated articles on Symbolic regr 2019-06-19 Frontiers in Artificial Intelligence - 66 - 63 + 67 + 65 open_in_new @@ -716,8 +716,8 @@

Manually curated articles on Symbolic regr 2016-09-21 Science Advances - 1164 - 63 + 1172 + 65 open_in_new @@ -736,8 +736,8 @@

Manually curated articles on Symbolic regr 2021-11-22 Proceedings of the Royal Society A, Proceedings. Mathematical, Physical, and Engineering Sciences - 154 - 63 + 158 + 65 open_in_new @@ -756,8 +756,8 @@

Manually curated articles on Symbolic regr 2022-06-01 Nonlinear Dynamics - 27 - 90 + 28 + 91 open_in_new @@ -776,8 +776,8 @@

Manually curated articles on Symbolic regr 2018-07-14 IEEE Access - 114 - 63 + 115 + 65 open_in_new @@ -835,48 +835,33 @@