Skip to content

Commit

Permalink
fix: add more negative samples to the template query
Browse files Browse the repository at this point in the history
This is an immediate fix to make sure the article fetching program runs successfully by adding more negative samples.
  • Loading branch information
awmulyadi authored Jul 25, 2024
2 parents 8acd1c3 + 5af8554 commit b5f1d4a
Showing 1 changed file with 24 additions and 6 deletions.
30 changes: 24 additions & 6 deletions app/data/query.tsv
Original file line number Diff line number Diff line change
@@ -1,13 +1,31 @@
Topic Use URL
Time-series forecasting 1 https://www.semanticscholar.org/paper/A-Survey-on-Graph-Neural-Networks-for-Time-Series%3A-Jin-Koh/d3dbbd0f0de51b421a6220bd6480b8d2e99a88e9?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Graph-Guided-Network-for-Irregularly-Sampled-Time-Zhang-Zeman/455bfc515eb279cc09023faa1f78c6efb61224ba?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Taming-Local-Effects-in-Graph-based-Spatiotemporal-Cini-Marisca/e2a83369383aff37224170c1ae3d3870d5d9e419?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Sparse-Graph-Learning-from-Spatiotemporal-Time-Cini-Zambon/0d01d21137a5af9f04e4b16a55a0f732cb8a540b?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Graph-Deep-Learning-for-Time-Series-Forecasting-Cini-Marisca/ccea298edb788edf821aef58f0952c3e8debc25a?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Large-Language-Models-Are-Zero-Shot-Time-Series-Gruver-Finzi/123acfbccca0460171b6b06a4012dbb991cde55b?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Graph-Mamba%3A-Towards-Long-Range-Graph-Sequence-with-Wang-Tsepa/1df04f33a8ef313cc2067147dbb79c3ca7c5c99f?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/A-decoder-only-foundation-model-for-time-series-Das-Kong/f45f85fa1beaa795c24c4ff86f1f2deece72252f?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/UniTS%3A-Building-a-Unified-Time-Series-Model-Gao-Koker/bcbcc2e1af8bcf6b07edf866be95116a8ed0bf91?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Unified-Training-of-Universal-Time-Series-Woo-Liu/4a111f7a3b56d0468f13104999844885157ef17d?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Time-LLM%3A-Time-Series-Forecasting-by-Reprogramming-Jin-Wang/16f01c1b3ddd0b2abd5ddfe4fdb3f74767607277?utm_source=direct_link
Time-series forecasting 1 https://www.semanticscholar.org/paper/Tiny-Time-Mixers-(TTMs)%3A-Fast-Pre-trained-Models-of-Ekambaram-Jati/e2e1f1b8e6c1b7f4f166e15b7c674945856a51b6?utm_source=direct_link
Time-series forecasting 0 https://www.semanticscholar.org/paper/Self-Supervised-Contrastive-Pre-Training-For-Time-Zhang-Zhao/648d90b713997a771e2c49f02cd771e8b7b10b37?utm_source=direct_link
Time-series forecasting 0 https://www.semanticscholar.org/paper/Domain-Adaptation-for-Time-Series-Under-Feature-and-He-Queen/5bd2c0acaf58c25f71617db2396188c74d29bf14?utm_source=direct_link
Time-series forecasting 0 https://www.semanticscholar.org/paper/AZ-whiteness-test%3A-a-test-for-signal-uncorrelation-Zambon-Alippi/c3c94ccc094dcf546e8e31c9a42506302e837524?utm_source=direct_link
Time-series forecasting 0 https://www.semanticscholar.org/paper/Graph-state-space-models-Zambon-Cini/279cd637b7e38bba1dd8915b5ce68cbcacecbe68?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Discovering-governing-equations-from-data-by-sparse-Brunton-Proctor/5d150cec2775f9bc863760448f14104cc8f42368?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Robust-learning-from-noisy%2C-incomplete%2C-data-via-Reinbold-Kageorge/60d0d998fa038182b3b69a57adb9b2f82d40589c?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Data-driven-discovery-of-coordinates-and-governing-Champion-Lusch/3c9961153493370500020c81527b3548c96f81e0?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Chaos-as-an-intermittently-forced-linear-system-Brunton-Brunton/3df50e9b73cc2937dfd651f4c3344bc99b7ed3f2?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Sparse-identification-of-nonlinear-dynamics-for-in-Kaiser-Kutz/b2eb064f432557c59ce99834d7dc7817e4687271?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Inferring-Biological-Networks-by-Sparse-of-Dynamics-Mangan-Brunton/06a0ba437d41a7c82c08a9636a4438c1b5031378?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/SINDy-PI%3A-a-robust-algorithm-for-parallel-implicit-Kaheman-Kutz/4971f9abd024e40fbbdff2e9492745b68a6bca01?utm_source=direct_link
Symbolic regression 0 https://www.semanticscholar.org/paper/Multidimensional-Approximation-of-Nonlinear-Systems-Gel%C3%9F-Klus/2b2aa13d4959073f61ad70555bc8c7da7d116196?utm_source=direct_link
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Learning-rigid-dynamics-with-face-interaction-graph-Allen-Rubanova/d6fdd8fc0c5fc052d040687e72638fb4297661cc?utm_source=direct_link
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Graph-network-simulators-can-learn-discontinuous%2C-Allen-Lopez-Guevara/979c112d5ed2f7653990a3591cdfccfad0dc27fd?utm_source=direct_link
Physics-based GNNs 1 https://www.semanticscholar.org/paper/Learning-Mesh-Based-Simulation-with-Graph-Networks-Pfaff-Fortunato/9e20f6874feaaf7c9994f9875b1d9cab17a2fd59?utm_source=direct_link
Koopman operator 1 https://www.semanticscholar.org/paper/From-Fourier-to-Koopman%3A-Spectral-Methods-for-Time-Lange-Brunton/11df7f23f72703ceefccc6367a6a18719850c53e?utm_source=direct_link
Koopman operator 1 https://www.semanticscholar.org/paper/Modern-Koopman-Theory-for-Dynamical-Systems-Brunton-Budi%C5%A1i%C4%87/68b6ca45a588d538b36335b23f6969c960cf2e6e?utm_source=direct_link
Koopman operator 1 https://www.semanticscholar.org/paper/Parsimony-as-the-ultimate-regularizer-for-machine-Kutz-Brunton/893768d957f8a46f0ba5bab11e5f2e2698ef1409?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Learning-Discrepancy-Models-From-Experimental-Data-Kaheman-Kaiser/73dd9c49f205280991826b2ea4b50344203916b4?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Discovery-of-Physics-From-Data%3A-Universal-Laws-and-Silva-Higdon/35e2571c17246577e0bc1b9de57a314c3b60e220?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Data-driven-discovery-of-partial-differential-Rudy-Brunton/0acd117521ef5aafb09fed02ab415523b330b058?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Ensemble-SINDy%3A-Robust-sparse-model-discovery-in-Fasel-Kutz/883547fdbd88552328a6615ec620f96e39c57018?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/Learning-sparse-nonlinear-dynamics-via-optimization-Bertsimas-Gurnee/e6f0a85009481dcfd93aaa43ed3f980e5033b0d8?utm_source=direct_link
Symbolic regression 1 https://www.semanticscholar.org/paper/A-Unified-Framework-for-Sparse-Relaxed-Regularized-Zheng-Askham/c0fc3882a9976f6a9cdc3a724bce184b786503da?utm_source=direct_link

0 comments on commit b5f1d4a

Please sign in to comment.