-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcoco.py
81 lines (69 loc) · 4.23 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from __future__ import division
from __future__ import print_function
import os
import json
import numpy as np
from data_loader import DatasetLoader
class COCOLoader(DatasetLoader):
""" Dataset loader class that loads feature matrices from given paths and
create shuffled batch for training, unshuffled batch for evaluation.
"""
def tokenize(self, language, token_filename, image_filename, tokens, vocab):
with open(token_filename, 'r') as f:
all_sentences = json.load(f)
image_list = [im.strip() for im in open(image_filename, 'r').readlines()]
assert len(all_sentences) == len(image_list)
max_length = 0
for im, sentences in zip(image_list, all_sentences):
i = self.image2index[im]
for sentence in sentences:
if language == 'en':
sentence = sentence.lower().split()
else:
sentence = sentence.encode('utf8').split()
vocab.update(sentence)
max_length = max(len(sentence), max_length)
tokens[i].append(sentence)
return max_length
def get_tokens(self, args, language):
token_filename = os.path.join('data', args.dataset, 'tokenized', '%s_%s_caption_list.json' % (self.split, language))
if self.split != 'train':
image_filename = os.path.join('data', args.dataset, self.split + '.txt')
elif language == 'en':
# contains images which there are no human-generated sentences for other languages
image_filename = os.path.join('data', args.dataset, 'tokenized', '%s_%s_coco.txt' % (self.split, language))
else:
image_filename = os.path.join('data', args.dataset, 'tokenized', '%s_en_%s_coco.txt' % (self.split, language))
tokens = [[] for _ in range(len(self.image2index))]
vocab = set()
max_length = self.tokenize(language, token_filename, image_filename, tokens, vocab)
if self.split == 'train':
if language == 'en':
# add images that have human-generated japanese captions
token_filename = os.path.join('data', args.dataset, 'tokenized', 'train_en_jp_caption_list.json')
image_filename = os.path.join('data', args.dataset, 'tokenized', 'train_en_jp_coco.txt')
max_length = max(max_length, self.tokenize(language, token_filename, image_filename, tokens, vocab))
# add images that have human-generated chinese captions
token_filename = os.path.join('data', args.dataset, 'tokenized', 'train_en_cn_caption_list.json')
image_filename = os.path.join('data', args.dataset, 'tokenized', 'train_en_cn_coco.txt')
max_length = max(max_length, self.tokenize(language, token_filename, image_filename, tokens, vocab))
# add translations to english from other languages
for this_lang in ['cn', 'jp']:
token_filename = os.path.join('data', args.dataset, 'tokenized', 'train_%s_to_en_caption_list.json' % this_lang)
image_filename = os.path.join('data', args.dataset, 'tokenized', 'train_en_%s_coco.txt' % this_lang)
max_length = max(max_length, self.tokenize(language, token_filename, image_filename, tokens, vocab))
else:
# add translations from english
token_filename = os.path.join('data', args.dataset, 'tokenized', 'train_%s_augment_caption_list.json' % language)
image_filename = os.path.join('data', args.dataset, 'tokenized', 'train_en_%s_augment_coco.txt' % language)
max_length = max(max_length, self.tokenize(language, token_filename, image_filename, tokens, vocab))
im2sent = {}
sent2im = []
num_sentences = 0
for i, sentences in enumerate(tokens):
im2sent[i] = np.arange(num_sentences, num_sentences + len(sentences))
sent2im.append(np.ones(len(sentences), np.int32) * i)
num_sentences += len(sentences)
sent2im = np.hstack(sent2im)
max_length = min(max_length, args.max_sentence_length)
return tokens, sent2im, im2sent, vocab, max_length