-
Notifications
You must be signed in to change notification settings - Fork 37
/
data.py
executable file
·867 lines (769 loc) · 36.1 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
# -*- coding: utf-8 -*-
# File: data.py
import copy
import platform
import numpy as np
import bisect
import cv2
import glob
import random
import os
import PIL
from tabulate import tabulate
from termcolor import colored
import xmltodict
from tensorpack.dataflow import (
DataFromList, MapDataComponent, MultiProcessMapDataZMQ, MultiThreadMapData, MapData, TestDataSpeed, imgaug)
from tensorpack.utils import logger
from tensorpack.utils.argtools import log_once, memoized
from common import (
CustomResize, DataFromListOfDict, box_to_point8,
filter_boxes_inside_shape, point8_to_box, segmentation_to_mask, np_iou)
from config import config as cfg
from dataset import DetectionDataset
from hard_example_utils import subsample_nns
from utils.generate_anchors import generate_anchors
from utils.np_box_ops import area as np_area, ioa as np_ioa
# import tensorpack.utils.viz as tpviz
class MalformedData(BaseException):
pass
def print_class_histogram(roidbs):
"""
Args:
roidbs (list[dict]): the same format as the output of `load_training_roidbs`.
"""
dataset = DetectionDataset()
hist_bins = np.arange(dataset.num_classes + 1)
# Histogram of ground-truth objects
gt_hist = np.zeros((dataset.num_classes,), dtype=np.int)
for entry in roidbs:
# filter crowd?
gt_inds = np.where(
(entry['class'] > 0) & (entry['is_crowd'] == 0))[0]
gt_classes = entry['class'][gt_inds]
gt_hist += np.histogram(gt_classes, bins=hist_bins)[0]
data = [[dataset.class_names[i], v] for i, v in enumerate(gt_hist)]
data.append(['total', sum([x[1] for x in data])])
table = tabulate(data, headers=['class', '#box'], tablefmt='pipe')
logger.info("Ground-Truth Boxes:\n" + colored(table, 'cyan'))
@memoized
def get_all_anchors(stride=None, sizes=None):
"""
Get all anchors in the largest possible image, shifted, floatbox
Args:
stride (int): the stride of anchors.
sizes (tuple[int]): the sizes (sqrt area) of anchors
Returns:
anchors: SxSxNUM_ANCHORx4, where S == ceil(MAX_SIZE/STRIDE), floatbox
The layout in the NUM_ANCHOR dim is NUM_RATIO x NUM_SIZE.
"""
if stride is None:
stride = cfg.RPN.ANCHOR_STRIDE
if sizes is None:
sizes = cfg.RPN.ANCHOR_SIZES
# Generates a NAx4 matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors
# are centered on stride / 2, have (approximate) sqrt areas of the specified
# sizes, and aspect ratios as given.
cell_anchors = generate_anchors(
stride,
scales=np.array(sizes, dtype=np.float) / stride,
ratios=np.array(cfg.RPN.ANCHOR_RATIOS, dtype=np.float))
# anchors are intbox here.
# anchors at featuremap [0,0] are centered at fpcoor (8,8) (half of stride)
max_size = cfg.PREPROC.MAX_SIZE
field_size = int(np.ceil(max_size / stride))
shifts = np.arange(0, field_size) * stride
shift_x, shift_y = np.meshgrid(shifts, shifts)
shift_x = shift_x.flatten()
shift_y = shift_y.flatten()
shifts = np.vstack((shift_x, shift_y, shift_x, shift_y)).transpose()
# Kx4, K = field_size * field_size
K = shifts.shape[0]
A = cell_anchors.shape[0]
field_of_anchors = (
cell_anchors.reshape((1, A, 4)) +
shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
field_of_anchors = field_of_anchors.reshape((field_size, field_size, A, 4))
# FSxFSxAx4
# Many rounding happens inside the anchor code anyway
# assert np.all(field_of_anchors == field_of_anchors.astype('int32'))
field_of_anchors = field_of_anchors.astype('float32')
field_of_anchors[:, :, :, [2, 3]] += 1
return field_of_anchors
@memoized
def get_all_anchors_fpn(strides=None, sizes=None):
"""
Returns:
[anchors]: each anchors is a SxSx NUM_ANCHOR_RATIOS x4 array.
"""
if strides is None:
strides = cfg.FPN.ANCHOR_STRIDES
if sizes is None:
sizes = cfg.RPN.ANCHOR_SIZES
assert len(strides) == len(sizes)
foas = []
for stride, size in zip(strides, sizes):
foa = get_all_anchors(stride=stride, sizes=(size,))
foas.append(foa)
return foas
def get_anchor_labels(anchors, gt_boxes, crowd_boxes):
"""
Label each anchor as fg/bg/ignore.
Args:
anchors: Ax4 float
gt_boxes: Bx4 float, non-crowd
crowd_boxes: Cx4 float
Returns:
anchor_labels: (A,) int. Each element is {-1, 0, 1}
anchor_boxes: Ax4. Contains the target gt_box for each anchor when the anchor is fg.
"""
# This function will modify labels and return the filtered inds
def filter_box_label(labels, value, max_num):
curr_inds = np.where(labels == value)[0]
if len(curr_inds) > max_num:
disable_inds = np.random.choice(
curr_inds, size=(len(curr_inds) - max_num),
replace=False)
labels[disable_inds] = -1 # ignore them
curr_inds = np.where(labels == value)[0]
return curr_inds
NA, NB = len(anchors), len(gt_boxes)
assert NB > 0 # empty images should have been filtered already
box_ious = np_iou(anchors, gt_boxes) # NA x NB
ious_argmax_per_anchor = box_ious.argmax(axis=1) # NA,
ious_max_per_anchor = box_ious.max(axis=1)
ious_max_per_gt = np.amax(box_ious, axis=0, keepdims=True) # 1xNB
# for each gt, find all those anchors (including ties) that has the max ious with it
anchors_with_max_iou_per_gt = np.where(box_ious == ious_max_per_gt)[0]
# Setting NA labels: 1--fg 0--bg -1--ignore
anchor_labels = -np.ones((NA,), dtype='int32') # NA,
# the order of setting neg/pos labels matter
anchor_labels[anchors_with_max_iou_per_gt] = 1
anchor_labels[ious_max_per_anchor >= cfg.RPN.POSITIVE_ANCHOR_THRESH] = 1
anchor_labels[ious_max_per_anchor < cfg.RPN.NEGATIVE_ANCHOR_THRESH] = 0
# label all non-ignore candidate boxes which overlap crowd as ignore
if crowd_boxes.size > 0:
cand_inds = np.where(anchor_labels >= 0)[0]
cand_anchors = anchors[cand_inds]
ioas = np_ioa(crowd_boxes, cand_anchors)
overlap_with_crowd = cand_inds[ioas.max(axis=0) > cfg.RPN.CROWD_OVERLAP_THRESH]
anchor_labels[overlap_with_crowd] = -1
# Subsample fg labels: ignore some fg if fg is too many
target_num_fg = int(cfg.RPN.BATCH_PER_IM * cfg.RPN.FG_RATIO)
fg_inds = filter_box_label(anchor_labels, 1, target_num_fg)
# Keep an image even if there is no foreground anchors
# if len(fg_inds) == 0:
# raise MalformedData("No valid foreground for RPN!")
# Subsample bg labels. num_bg is not allowed to be too many
old_num_bg = np.sum(anchor_labels == 0)
if old_num_bg == 0:
# No valid bg in this image, skip.
raise MalformedData("No valid background for RPN!")
target_num_bg = cfg.RPN.BATCH_PER_IM - len(fg_inds)
filter_box_label(anchor_labels, 0, target_num_bg) # ignore return values
# Set anchor boxes: the best gt_box for each fg anchor
anchor_boxes = np.zeros((NA, 4), dtype='float32')
fg_boxes = gt_boxes[ious_argmax_per_anchor[fg_inds], :]
anchor_boxes[fg_inds, :] = fg_boxes
# assert len(fg_inds) + np.sum(anchor_labels == 0) == cfg.RPN.BATCH_PER_IM
return anchor_labels, anchor_boxes
def get_rpn_anchor_input(im, boxes, is_crowd):
"""
Args:
im: an image
boxes: nx4, floatbox, gt. shoudn't be changed
is_crowd: n,
Returns:
The anchor labels and target boxes for each pixel in the featuremap.
fm_labels: fHxfWxNA
fm_boxes: fHxfWxNAx4
NA will be NUM_ANCHOR_SIZES x NUM_ANCHOR_RATIOS
"""
boxes = boxes.copy()
all_anchors = np.copy(get_all_anchors())
# fHxfWxAx4 -> (-1, 4)
featuremap_anchors_flatten = all_anchors.reshape((-1, 4))
# only use anchors inside the image
inside_ind, inside_anchors = filter_boxes_inside_shape(featuremap_anchors_flatten, im.shape[:2])
# obtain anchor labels and their corresponding gt boxes
anchor_labels, anchor_gt_boxes = get_anchor_labels(inside_anchors, boxes[is_crowd == 0], boxes[is_crowd == 1])
# Fill them back to original size: fHxfWx1, fHxfWx4
anchorH, anchorW = all_anchors.shape[:2]
featuremap_labels = -np.ones((anchorH * anchorW * cfg.RPN.NUM_ANCHOR, ), dtype='int32')
featuremap_labels[inside_ind] = anchor_labels
featuremap_labels = featuremap_labels.reshape((anchorH, anchorW, cfg.RPN.NUM_ANCHOR))
featuremap_boxes = np.zeros((anchorH * anchorW * cfg.RPN.NUM_ANCHOR, 4), dtype='float32')
featuremap_boxes[inside_ind, :] = anchor_gt_boxes
featuremap_boxes = featuremap_boxes.reshape((anchorH, anchorW, cfg.RPN.NUM_ANCHOR, 4))
return featuremap_labels, featuremap_boxes
def get_multilevel_rpn_anchor_input(im, boxes, is_crowd):
"""
Args:
im: an image
boxes: nx4, floatbox, gt. shoudn't be changed
is_crowd: n,
Returns:
[(fm_labels, fm_boxes)]: Returns a tuple for each FPN level.
Each tuple contains the anchor labels and target boxes for each pixel in the featuremap.
fm_labels: fHxfWx NUM_ANCHOR_RATIOS
fm_boxes: fHxfWx NUM_ANCHOR_RATIOS x4
"""
boxes = boxes.copy()
anchors_per_level = get_all_anchors_fpn()
flatten_anchors_per_level = [k.reshape((-1, 4)) for k in anchors_per_level]
all_anchors_flatten = np.concatenate(flatten_anchors_per_level, axis=0)
inside_ind, inside_anchors = filter_boxes_inside_shape(all_anchors_flatten, im.shape[:2])
anchor_labels, anchor_gt_boxes = get_anchor_labels(inside_anchors, boxes[is_crowd == 0], boxes[is_crowd == 1])
# map back to all_anchors, then split to each level
num_all_anchors = all_anchors_flatten.shape[0]
all_labels = -np.ones((num_all_anchors, ), dtype='int32')
all_labels[inside_ind] = anchor_labels
all_boxes = np.zeros((num_all_anchors, 4), dtype='float32')
all_boxes[inside_ind] = anchor_gt_boxes
start = 0
multilevel_inputs = []
for level_anchor in anchors_per_level:
assert level_anchor.shape[2] == len(cfg.RPN.ANCHOR_RATIOS)
anchor_shape = level_anchor.shape[:3] # fHxfWxNUM_ANCHOR_RATIOS
num_anchor_this_level = np.prod(anchor_shape)
end = start + num_anchor_this_level
multilevel_inputs.append(
(all_labels[start: end].reshape(anchor_shape),
all_boxes[start: end, :].reshape(anchor_shape + (4,))
))
start = end
assert end == num_all_anchors, "{} != {}".format(end, num_all_anchors)
return multilevel_inputs
def get_bbox_from_segmentation_mask_np(mask):
object_locations = (np.stack(np.where(np.equal(mask, 1))).T[:, :2]).astype(np.int32)
y0 = np.min(object_locations[:, 0])
x0 = np.min(object_locations[:, 1])
y1 = np.max(object_locations[:, 0]) + 1
x1 = np.max(object_locations[:, 1]) + 1
bbox = np.stack([x0, y0, x1, y1])
return bbox
def _augment_boxes(boxes, aug, params):
points = box_to_point8(boxes)
points = aug.augment_coords(points, params)
boxes = point8_to_box(points)
#assert np.min(np_area(boxes)) > 0, "Some boxes have zero area!"
if np.min(np_area(boxes)) <= 0:
return None
return boxes
def _preprocess_common(ref_box, target_box, ref_im, target_im, aug):
ref_boxes = np.array([ref_box], dtype=np.float32)
target_boxes = np.array([target_box], dtype=np.float32)
klass = np.array([1], dtype=np.int32)
# augmentation:
target_im, target_params = aug.augment_return_params(target_im)
ref_im, ref_params = aug.augment_return_params(ref_im)
ref_boxes = _augment_boxes(ref_boxes, aug, ref_params)
target_boxes = _augment_boxes(target_boxes, aug, target_params)
if ref_boxes is None or target_boxes is None:
return None
# additional augmentations:
# motion blur
if cfg.DATA.MOTION_BLUR_AUGMENTATIONS:
do_motion_blur_ref = np.random.rand() < 0.25
if do_motion_blur_ref:
# generating the kernel
kernel_size = np.random.randint(5, 15)
kernel_motion_blur = np.zeros((kernel_size, kernel_size))
kernel_motion_blur[int((kernel_size - 1) / 2), :] = np.ones(kernel_size)
kernel_motion_blur = kernel_motion_blur / kernel_size
# applying the kernel
ref_im = cv2.filter2D(ref_im, -1, kernel_motion_blur)
do_motion_blur_target = np.random.rand() < 0.25
if do_motion_blur_target:
# generating the kernel
kernel_size = np.random.randint(5, 15)
kernel_motion_blur = np.zeros((kernel_size, kernel_size))
kernel_motion_blur[int((kernel_size - 1) / 2), :] = np.ones(kernel_size)
kernel_motion_blur = kernel_motion_blur / kernel_size
# applying the kernel
target_im = cv2.filter2D(target_im, -1, kernel_motion_blur)
# grayscale
if cfg.DATA.GRAYSCALE_AUGMENTATIONS:
do_grayscale = np.random.rand() < 0.25
if do_grayscale:
grayscale_aug = imgaug.Grayscale()
ref_im = np.tile(grayscale_aug.augment(ref_im), [1, 1, 3])
target_im = np.tile(grayscale_aug.augment(target_im), [1, 1, 3])
if cfg.DATA.DEBUG_VIS:
import matplotlib.pyplot as plt
ref_im_vis = ref_im.copy()
#ref_im_vis[int(ref_boxes[0][1]):int(ref_boxes[0][3]), int(ref_boxes[0][0]):int(ref_boxes[0][2]), 0] = 255
ref_im_vis[int(ref_boxes[0][1]):int(ref_boxes[0][3]), int(ref_boxes[0][0]):int(ref_boxes[0][2]), 2] = \
(0.5 * ref_im_vis[int(ref_boxes[0][1]):int(ref_boxes[0][3]), int(ref_boxes[0][0]):int(ref_boxes[0][2]), 2] + 120).astype(np.uint8)
plt.imshow(ref_im_vis[..., ::-1])
plt.show()
target_im_vis = target_im.copy()
target_im_vis[int(target_boxes[0][1]):int(target_boxes[0][3]), int(target_boxes[0][0]):int(target_boxes[0][2]), 2] = \
(0.5 * target_im_vis[int(target_boxes[0][1]):int(target_boxes[0][3]), int(target_boxes[0][0]):int(target_boxes[0][2]), 2] + 120).astype(np.uint8)
plt.imshow(target_im_vis[..., ::-1])
plt.show()
is_crowd = np.array([0], dtype=np.int32)
ret = {'ref_image': ref_im, 'ref_box': ref_boxes[0], 'image': target_im}
if cfg.DATA.DEBUG_VIS:
return ret
# rpn anchor:
try:
if cfg.MODE_FPN:
multilevel_anchor_inputs = get_multilevel_rpn_anchor_input(target_im, target_boxes, is_crowd)
for i, (anchor_labels, anchor_boxes) in enumerate(multilevel_anchor_inputs):
ret['anchor_labels_lvl{}'.format(i + 2)] = anchor_labels
ret['anchor_boxes_lvl{}'.format(i + 2)] = anchor_boxes
else:
# anchor_labels, anchor_boxes
ret['anchor_labels'], ret['anchor_boxes'] = get_rpn_anchor_input(target_im, target_boxes, is_crowd)
ret['gt_boxes'] = target_boxes
ret['gt_labels'] = klass
if not len(target_boxes):
raise MalformedData("No valid gt_boxes!")
except MalformedData as e:
log_once("Input is filtered for training: {}".format(str(e)), 'warn')
return None
return ret
def _preprocess_imagenet_vid(roidb, aug, hard_example_index, hard_example_names):
vid_name = roidb
ann_path = os.path.join(cfg.DATA.IMAGENET_VID_ROOT, "Annotations/VID/train/", vid_name)
ann_files = sorted(glob.glob(ann_path + "/*.xml"))
# randomly select two files
ref_idx = np.random.randint(len(ann_files))
target_idx = np.random.randint(1, len(ann_files))
ref_ann_file = ann_files[ref_idx]
target_ann_file = ann_files[target_idx]
def get_id_to_data(ann):
id_to_data = {}
if "object" in ann:
obj_anns = ann["object"]
if not isinstance(obj_anns, list):
obj_anns = [obj_anns]
for obj_ann in obj_anns:
id_ = obj_ann["trackid"]
id_to_data[id_] = obj_ann
return id_to_data
ref_ann = xmltodict.parse(open(ref_ann_file).read())["annotation"]
target_ann = xmltodict.parse(open(target_ann_file).read())["annotation"]
ref_id_to_data = get_id_to_data(ref_ann)
target_id_to_data = get_id_to_data(target_ann)
ref_obj_ids = set(ref_id_to_data.keys())
target_obj_ids = set(target_id_to_data.keys())
obj_ids = ref_obj_ids & target_obj_ids
obj_ids = list(obj_ids)
if len(obj_ids) == 0:
# this happens quite often, do not print it for now
#log_once("Inputs {},{} filtered for training because of no common objects".format(ref_fname, target_fname),
# 'warn')
return None
random.shuffle(obj_ids)
obj_id = obj_ids[0]
def obj_data_to_bbox(obj_ann):
bbox = obj_ann['bndbox']
x1 = bbox['xmin']
y1 = bbox['ymin']
x2 = bbox['xmax']
y2 = bbox['ymax']
box = [x1, y1, x2, y2]
return box
ref_ann = ref_id_to_data[obj_id]
target_ann = target_id_to_data[obj_id]
ref_box = obj_data_to_bbox(ref_ann)
target_box = obj_data_to_bbox(target_ann)
ref_fname = ref_ann_file.replace("/Annotations/", "/Data/").replace(".xml", ".JPEG")
ref_im = cv2.imread(ref_fname, cv2.IMREAD_COLOR)
target_fname = target_ann_file.replace("/Annotations/", "/Data/").replace(".xml", ".JPEG")
target_im = cv2.imread(target_fname, cv2.IMREAD_COLOR)
data = _preprocess_common(ref_box, target_box, ref_im, target_im, aug)
vid_name = roidb.replace("/", "_") + "_" + str(obj_id)
return _maybe_add_hard_example_data(data, ref_fname, vid_name, hard_example_index,
hard_example_names, dataset_name="ImageNetVID")
def _preprocess_davis_like(roidb, aug, ann_folder, dataset_name="YouTubeVOS", hard_example_index=None,
hard_example_names=None):
vid_name = roidb
ann_path = os.path.join(ann_folder, vid_name)
ann_files = sorted(glob.glob(ann_path + "/*.png"))
if len(ann_files) == 0:
logger.info("no annotations found, skipping {}...".format(ann_path))
return None
# randomly select two files
ref_idx = np.random.randint(len(ann_files))
target_idx = np.random.randint(1, len(ann_files))
ref_ann_file = ann_files[ref_idx]
target_ann_file = ann_files[target_idx]
ref_masks = np.array(PIL.Image.open(ref_ann_file))
target_masks = np.array(PIL.Image.open(target_ann_file))
ref_obj_ids = set(np.setdiff1d(np.unique(ref_masks), [0]))
target_obj_ids = set(np.setdiff1d(np.unique(target_masks), [0]))
obj_ids = ref_obj_ids & target_obj_ids
obj_ids = list(obj_ids)
if len(obj_ids) == 0:
# this happens quite often, do not print it for now
# log_once("Inputs {},{} filtered for training because of no common objects".format(ref_fname, target_fname),
# 'warn')
return None
random.shuffle(obj_ids)
obj_id = obj_ids[0]
ref_mask = ref_masks == obj_id
target_mask = target_masks == obj_id
# convert mask to bbox!
ref_box = get_bbox_from_segmentation_mask_np(ref_mask)
target_box = get_bbox_from_segmentation_mask_np(target_mask)
ref_fname = ref_ann_file.replace("/Annotations/", "/JPEGImages/").replace("/Annotations/", "/JPEGImages/").replace(".png", ".jpg")
ref_im = cv2.imread(ref_fname, cv2.IMREAD_COLOR)
target_fname = target_ann_file.replace("/Annotations/", "/JPEGImages/").replace("/Annotations/", "/JPEGImages/").replace(".png", ".jpg")
target_im = cv2.imread(target_fname, cv2.IMREAD_COLOR)
data = _preprocess_common(ref_box, target_box, ref_im, target_im, aug)
vid_name = roidb + "_" + str(obj_id)
return _maybe_add_hard_example_data(data, ref_fname, vid_name, hard_example_index,
hard_example_names, dataset_name=dataset_name)
def _preprocess_lasot(roidb, aug, hard_example_index, hard_example_names):
category = roidb.split("-")[0]
data_path = os.path.join(cfg.DATA.LASOT_ROOT, category, roidb)
gt_file = os.path.join(data_path, "groundtruth.txt")
oov_file = os.path.join(data_path, "out_of_view.txt")
full_occ_file = os.path.join(data_path, "full_occlusion.txt")
boxes = []
with open(gt_file) as f:
for l in f:
sp = l.strip().split(",")
box = [float(x) for x in sp]
box[2] += box[0]
box[3] += box[1]
boxes.append(box)
with open(oov_file) as f:
sp = f.read().strip().split(",")
oovs = [int(x) for x in sp]
with open(full_occ_file) as f:
sp = f.read().strip().split(",")
full_occs = [int(x) for x in sp]
n_frames = len(boxes)
assert len(boxes) == len(oovs) == len(full_occs)
data = list(zip(range(n_frames), boxes, oovs, full_occs))
data = [x for x in data if x[2] == 0 and x[3] == 0]
assert len(data) > 0
n_frames = len(data)
ref_idx = np.random.randint(n_frames)
target_idx = np.random.randint(n_frames)
ref_box = data[ref_idx][1]
target_box = data[target_idx][1]
ref_time_idx = data[ref_idx][0]
target_time_idx = data[target_idx][0]
ref_fname = os.path.join(data_path, "img", "%08d.jpg" % (ref_time_idx + 1))
ref_im = cv2.imread(ref_fname, cv2.IMREAD_COLOR)
target_fname = os.path.join(data_path, "img", "%08d.jpg" % (target_time_idx + 1))
target_im = cv2.imread(target_fname, cv2.IMREAD_COLOR)
data = _preprocess_common(ref_box, target_box, ref_im, target_im, aug)
return _maybe_add_hard_example_data(data, ref_fname, roidb, hard_example_index,
hard_example_names, dataset_name="LaSOT")
def _preprocess_got10k(roidb, aug, hard_example_index, hard_example_names):
vid_name = roidb
data_path = os.path.join(cfg.DATA.GOT10K_ROOT, "train", vid_name)
gt_file = os.path.join(data_path, "groundtruth.txt")
absent_file = os.path.join(data_path, "absence.label")
boxes = []
absence = []
with open(gt_file) as f:
for l in f:
sp = l.strip().split(",")
box = [float(x) for x in sp]
box[2] += box[0]
box[3] += box[1]
boxes.append(box)
with open(absent_file) as f:
for l in f:
absent = int(l.strip())
absence.append(absent)
n_frames = len(boxes)
assert len(boxes) == len(absence)
data = list(zip(range(n_frames), boxes, absence))
data = [x for x in data if x[2] == 0]
assert len(data) > 0
n_frames = len(data)
ref_idx = np.random.randint(n_frames)
target_idx = np.random.randint(n_frames)
ref_box = data[ref_idx][1]
target_box = data[target_idx][1]
ref_time_idx = data[ref_idx][0]
target_time_idx = data[target_idx][0]
ref_fname = os.path.join(data_path, "%08d.jpg" % (ref_time_idx + 1))
ref_im = cv2.imread(ref_fname, cv2.IMREAD_COLOR)
target_fname = os.path.join(data_path, "%08d.jpg" % (target_time_idx + 1))
target_im = cv2.imread(target_fname, cv2.IMREAD_COLOR)
data = _preprocess_common(ref_box, target_box, ref_im, target_im, aug)
return _maybe_add_hard_example_data(data, ref_fname, vid_name, hard_example_index, hard_example_names,
dataset_name="GOT10k")
def _maybe_add_hard_example_data(data, ref_fname, vid_name, hard_example_index, hard_example_names, dataset_name):
if not cfg.MODE_HARD_MINING:
return data
data = data.copy()
name_for_idx = dataset_name + "/" + vid_name + "/"
if dataset_name == "GOT10k":
name_for_idx += ref_fname.split("/")[-1].replace(".jpg", "")
this_fmt = "%08d"
elif dataset_name == "ImageNetVID":
name_for_idx += str(int(ref_fname.split("/")[-1].replace(".JPEG", "")))
this_fmt = "%06d"
elif dataset_name == "LaSOT":
name_for_idx += str(int(ref_fname.split("/")[-1].replace(".jpg", "")))
this_fmt = "%08d"
elif dataset_name == "YouTubeVOS":
name_for_idx += str(int(ref_fname.split("/")[-1].replace(".jpg", "")))
this_fmt = "%05d"
else:
assert False, ("unknown dataset", dataset_name)
try:
idx = hard_example_names["all"].index(name_for_idx)
except ValueError:
log_once("Not found in index: {}".format(name_for_idx), 'warn')
return None
if dataset_name == "LaSOT":
nns = hard_example_index.get_nns_by_item(idx, cfg.HARD_MINING_KNN_LASOT)
else:
nns = hard_example_index.get_nns_by_item(idx, cfg.HARD_MINING_KNN)
if cfg.MODE_HARD_NEGATIVES_ONLY_CROSSOVER or \
(cfg.MODE_HARD_NEGATIVES_ONLY_CROSSOVER_YOUTUBEVOS and dataset_name == "YouTubeVOS"):
nn_names = [hard_example_names["all"][nn] for nn in nns]
nn_datasets = [x.split("/")[0] for x in nn_names]
nns = [nn for nn, ds_ in zip(nns, nn_datasets) if ds_ != dataset_name]
remove_query = False
else:
remove_query = True
nns = subsample_nns(vid_name, nns, hard_example_names["all"], cfg.N_HARD_NEGATIVES_TO_SAMPLE,
remove_query=remove_query)
feats = []
for nn in nns:
sp = hard_example_names["all"][nn].split("/")
if sp[0] == "GOT10k":
fmt = "%08d"
elif sp[0] == "ImageNetVID":
fmt = "%06d"
elif sp[0] == "LaSOT":
fmt = "%08d"
elif sp[0] == "YouTubeVOS":
fmt = "%05d"
else:
assert False, ("unknown dataset", sp[0])
feat_fn = os.path.join(cfg.HARD_MINING_DATA_PATH, sp[0], "det_feats_compressed", sp[1],
fmt % int(sp[2]) + ".npz")
feat = np.load(feat_fn)
feat = feat["f"]
feats.append(feat)
feats = np.stack(feats, axis=0)
data['hard_negative_features'] = feats
if cfg.MODE_IF_HARD_MINING_THEN_ALSO_POSITIVES:
hard_example_names_dataset = hard_example_names[dataset_name]
#hpens_oldversion = [x for x in hard_example_names_dataset if x.startswith(vid_name)]
left = right = bisect.bisect_left(hard_example_names_dataset, vid_name)
while left > 0:
if hard_example_names_dataset[left - 1].startswith(vid_name):
left -= 1
else:
break
while right < len(hard_example_names_dataset):
if hard_example_names_dataset[right].startswith(vid_name):
right += 1
else:
break
hpens = hard_example_names_dataset[left:right]
assert len(hpens) > 0, vid_name
random.shuffle(hpens)
hpens = hpens[:cfg.N_HARD_POS_TO_SAMPLE]
feats = []
ious = []
gt_boxes = []
jitter_boxes = []
for hpen in hpens:
sp = hpen.split("/")
feat_fn = os.path.join(cfg.HARD_MINING_DATA_PATH, dataset_name, "det_feats_compressed", sp[0],
this_fmt % int(sp[1]) + ".npz")
npz_data = np.load(feat_fn)
feat = npz_data["f"]
iou_data = npz_data["i"]
feats.append(feat)
iou = [float(x) for x in iou_data[-3:]]
ious.append(iou)
box_xyxy = [float(x) for x in iou_data[:4]]
gt_boxes.append(box_xyxy)
jitter_box_xyxy = np.array([float(x) for x in iou_data[4:16]]).reshape(3, 4)
jitter_boxes.append(jitter_box_xyxy)
feats = np.stack(feats, axis=0)
# atm just sample from same sequence, does not need to be hard
data['hard_positive_features'] = feats
data['hard_positive_ious'] = np.stack(ious, axis=0)
data['hard_positive_gt_boxes'] = np.stack(gt_boxes, axis=0)
data['hard_positive_jitter_boxes'] = np.stack(jitter_boxes, axis=0)
return data
def _preprocess_youtube_bb(roidb, aug):
ann_path = os.path.join(cfg.DATA.YOUTUBE_BB_ROOT, "annotations", roidb)
ann_files = glob.glob(os.path.join(ann_path, "*.xml"))
random.shuffle(ann_files)
def ann_to_bbox(ann):
if 'object' not in ann:
return None
if 'bndbox' not in ann['object']:
return None
bbox = ann['object']['bndbox']
width = float(ann["size"]["width"])
height = float(ann["size"]["height"])
x1 = int(round(float(bbox['xmin']) * width))
y1 = int(round(float(bbox['ymin']) * height))
x2 = int(round(float(bbox['xmax']) * width))
y2 = int(round(float(bbox['ymax']) * height))
box = [x1, y1, x2, y2]
return box
# randomly select two files with bounding box
sampled = []
idx = 0
while len(sampled) < 2 and idx < len(ann_files):
ann = xmltodict.parse(open(ann_files[idx]).read())["annotation"]
bbox = ann_to_bbox(ann)
if bbox is not None:
sampled.append((ann_files[idx], bbox))
idx += 1
if len(sampled) < 2:
#print("did not find 2 bounding boxes in", roidb)
return None
ref_ann_file = sampled[0][0]
target_ann_file = sampled[1][0]
ref_box = sampled[0][1]
target_box = sampled[1][1]
ref_fname = ref_ann_file.replace("/annotations/", "/frames/").replace(".xml", ".jpg")
ref_im = cv2.imread(ref_fname, cv2.IMREAD_COLOR)
target_fname = target_ann_file.replace("/annotations/", "/frames/").replace(".xml", ".jpg")
target_im = cv2.imread(target_fname, cv2.IMREAD_COLOR)
return _preprocess_common(ref_box, target_box, ref_im, target_im, aug)
def _preprocess_trackingnet(roidb, aug):
part, vid_name = roidb.split("____")
data_path = os.path.join(cfg.DATA.TRACKINGNET_ROOT, part)
gt_file = os.path.join(data_path, "anno", vid_name + ".txt")
boxes = []
with open(gt_file) as f:
for l in f:
sp = l.strip().split(",")
box = [float(x) for x in sp]
box[2] += box[0]
box[3] += box[1]
# there are negative coordinates in the data... should we compensate for that?
if box[0] < 0:
box[0] = 0.0
if box[1] < 0:
box[1] = 0.0
boxes.append(box)
n_frames = len(boxes)
ref_idx = np.random.randint(n_frames)
target_idx = np.random.randint(n_frames)
ref_box = boxes[ref_idx]
target_box = boxes[target_idx]
ref_fname = os.path.join(data_path, "frames", vid_name, str(ref_idx) + ".jpg")
ref_im = cv2.imread(ref_fname, cv2.IMREAD_COLOR)
target_fname = os.path.join(data_path, "frames", vid_name, str(target_idx) + ".jpg")
target_im = cv2.imread(target_fname, cv2.IMREAD_COLOR)
return _preprocess_common(ref_box, target_box, ref_im, target_im, aug)
def get_train_dataflow():
roidbs = DetectionDataset().load_training_roidbs(cfg.DATA.TRAIN)
ds = DataFromList(roidbs, shuffle=True)
# for now let's not do flipping to keep things simple
aug = imgaug.AugmentorList(
[CustomResize(cfg.PREPROC.TRAIN_SHORT_EDGE_SIZE, cfg.PREPROC.MAX_SIZE)])#,
#imgaug.Flip(horiz=True)])
if cfg.MODE_HARD_MINING:
from annoy import AnnoyIndex
hard_mining_index = AnnoyIndex(128, 'euclidean')
hard_mining_index.load(cfg.HARD_MINING_DATA_PATH + "/index_all/index.ann")
names_path = cfg.HARD_MINING_DATA_PATH + "index_all/names.txt"
hard_mining_names_all = []
with open(names_path) as f:
for l in f:
hard_mining_names_all.append(l.strip())
hard_example_names_got = [x[7:] for x in hard_mining_names_all if x.startswith("GOT10k/")]
hard_example_names_vid = [x[12:] for x in hard_mining_names_all if x.startswith("ImageNetVID/")]
hard_example_names_ytbvos = [x[11:] for x in hard_mining_names_all if x.startswith("YouTubeVOS/")]
hard_example_names_lasot = [x[6:] for x in hard_mining_names_all if x.startswith("LaSOT/")]
assert len(hard_example_names_got) > 0
assert len(hard_example_names_vid) > 0
assert len(hard_example_names_ytbvos) > 0
assert len(hard_example_names_lasot) > 0
hard_example_names_got.sort()
hard_example_names_vid.sort()
hard_example_names_ytbvos.sort()
hard_example_names_lasot.sort()
hard_mining_names = {"all": hard_mining_names_all, "GOT10k": hard_example_names_got,
"ImageNetVID": hard_example_names_vid, "YouTubeVOS": hard_example_names_ytbvos,
"LaSOT": hard_example_names_lasot}
else:
hard_mining_index = None
hard_mining_names = None
def preprocess(roidb):
if roidb.startswith("VID/"):
return _preprocess_imagenet_vid(roidb[4:], aug, hard_mining_index, hard_mining_names)
elif roidb.startswith("DAVIS/"):
return _preprocess_davis_like(roidb[6:], aug, os.path.join(cfg.DATA.DAVIS2017_ROOT, "Annotations",
"480p"))
elif roidb.startswith("YouTubeVOS/"):
return _preprocess_davis_like(roidb[11:], aug, os.path.join(cfg.DATA.YOUTUBE_VOS_ROOT, "train",
"Annotations"),
"YouTubeVOS", hard_mining_index, hard_mining_names)
elif roidb.startswith("GOT10K/"):
return _preprocess_got10k(roidb[7:], aug, hard_mining_index, hard_mining_names)
elif roidb.startswith("LaSOT/"):
return _preprocess_lasot(roidb[6:], aug, hard_mining_index, hard_mining_names)
elif roidb.startswith("YouTube-BB/"):
return _preprocess_youtube_bb(roidb[11:], aug)
elif roidb.startswith("TrackingNet/"):
return _preprocess_trackingnet(roidb[12:], aug)
else:
assert False
#ds = MultiProcessMapDataZMQ(ds, 10, preprocess)
#ds = MapData(ds, preprocess)
if cfg.DATA.DEBUG_VIS or not cfg.DATA.MULTITHREAD:
ds = MapData(ds, preprocess)
else:
#ds = MultiThreadMapData(ds, 6, preprocess)
ds = MultiThreadMapData(ds, 8, preprocess, buffer_size=80)
return ds
def get_eval_dataflow(name, shard=0, num_shards=1):
seqs = []
with open("davis2017_fast_val_ids.txt") as f:
for l in f:
seqs.append(l.strip())
seqs_timesteps = []
for seq in seqs:
files = sorted(glob.glob(cfg.DATA.DAVIS2017_ROOT + "/JPEGImages/480p/" + seq.split("__")[0] + "/*.jpg"))[1:-1]
timesteps = [f.split('/')[-1].replace(".jpg", "") for f in files]
for timestep in timesteps:
ann_fn = cfg.DATA.DAVIS2017_ROOT + "/Annotations/480p/" + seq.split("__")[0] + '/' + timestep + ".png"
ann = np.array(PIL.Image.open(ann_fn))
ann_mask = ann == int(seq.split("__")[1])
if ann_mask.any():
seqs_timesteps.append((seq.split('__')[0], seq.split('__')[1], timestep))
# seqs_timesteps += [(seq.split('__')[0], seq.split('__')[1], timestep) for timestep in timesteps]
num_seqs_timesteps = len(seqs_timesteps)
seqs_timesteps_per_shard = num_seqs_timesteps // num_shards
seqs_timesteps_range = (shard * seqs_timesteps_per_shard, (shard + 1) * seqs_timesteps_per_shard if shard + 1 < num_shards else num_seqs_timesteps)
ds = DataFromList(seqs_timesteps[seqs_timesteps_range[0]: seqs_timesteps_range[1]])
def preprocess(seq_timestep):
seq, obj_id, timestep = seq_timestep
ann_fn = cfg.DATA.DAVIS2017_ROOT + "/Annotations/480p/" + seq + '/' + timestep + ".png"
ann = np.array(PIL.Image.open(ann_fn))
ann_mask = ann == int(obj_id)
if not ann_mask.any():
return None, None, None, None, None
# ann_box = np.array([-1000000, -1000000, 100000, 100000])
else:
ann_box = get_bbox_from_segmentation_mask_np(ann_mask)
ff_fn = cfg.DATA.DAVIS2017_ROOT + "/Annotations/480p/" + seq + '/' + str(0).zfill(5) + ".png"
ff = np.array(PIL.Image.open(ff_fn))
ff_mask = ff == int(obj_id)
ff_box = get_bbox_from_segmentation_mask_np(ff_mask)
x1, y1, x2, y2 = [float(x) for x in ann_box]
target_bbox = np.array([x1, y1, x2, y2], dtype=np.float32)
x1, y1, x2, y2 = [float(x) for x in ff_box]
ref_bbox = np.array([x1, y1, x2, y2], dtype=np.float32)
target_img_fn = cfg.DATA.DAVIS2017_ROOT + "/JPEGImages/480p/" + seq + "/" + timestep + ".jpg"
ref_img_fn = cfg.DATA.DAVIS2017_ROOT + "/JPEGImages/480p/" + seq + "/" + str(0).zfill(5) + ".jpg"
target_img = cv2.imread(target_img_fn, cv2.IMREAD_COLOR)
ref_img = cv2.imread(ref_img_fn, cv2.IMREAD_COLOR)
return ref_img, ref_bbox, target_img, target_bbox, "__".join(seq_timestep)
ds = MapData(ds, preprocess)
return ds