-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisOdd.py
300 lines (210 loc) · 8.77 KB
/
isOdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
###### check sanidade, determinar se um número é par ou ímpar com redes neurais ######
#'/home/jaco/Projetos/numpyPureNNMNIST/data/test_iseven.csv'
import numpy as np
class simpleNN:
def __init__(self,inputSize,nLayers,outputSize,nodesPerLayer,data,learning_rate,actfun):
self.inputSize = inputSize
self.nLayers = nLayers
self.outputSize = outputSize
self.nodesPerLayer = nodesPerLayer
self.data = data
self.learning_rate = learning_rate
self.actfun = actfun
weightList = []
weight0List = []
for idx,layer in enumerate(self.nodesPerLayer):
if idx == 0:
continue
weights = np.random.normal(loc=0, scale=0.01, size=(self.nodesPerLayer[idx-1],layer))
weightList.append(weights)
for idx,layer in enumerate(self.nodesPerLayer):
if idx == 0:
continue
weights = np.random.normal(loc=0, scale=0.01, size=(1,self.nodesPerLayer[idx]))
weight0List.append(weights)
self.weightList = weightList
self.weight0List = weight0List
def fit(self,epoch):
for indice in range(0,len(self.data['X_train'])):
###### foward propag:
for e in range(0,epoch):
hiddenLayerResults = []
for idx,layer in enumerate(self.nodesPerLayer):
if idx == 0:
continue
row = np.array([])
if idx == 1:
row = self.data['X_train'][indice]
row = row.reshape(1,row.size)
row_y = self.data['Y_train'][indice]
else:
row = hiddenLayerResults[idx-2]
hiddenLayerResults.append(actFun(self.weight0List[idx-1] + np.matmul(row,self.weightList[idx-1]),self.actfun))
####### back propag:
errorLayerResults = []
for idx,layer in reversed(list(enumerate(self.nodesPerLayer))):
if idx == 0:
continue
if idx == len(self.nodesPerLayer)-1:
error = np.multiply((hiddenLayerResults[idx-1] - row_y) , actFunDeriv(hiddenLayerResults[idx-1],self.actfun))
errorLayerResults.append(error)
else:
deriv = actFunDeriv(hiddenLayerResults[idx-1],self.actfun)
errorLayerResults.append(np.multiply(np.matmul(errorLayerResults[-1],self.weightList[idx].T),deriv))
errorLayerResults.reverse()
######## update weights :
for idx,layer in enumerate(self.nodesPerLayer):
if idx == 0:
continue
row = np.array([])
if idx == 1:
row = self.data['X_train'][indice]
row = row.reshape(1,row.size)
row_y = self.data['Y_train'][indice]
else:
row = hiddenLayerResults[idx-2]
self.weightList[idx-1] = self.weightList[idx-1] - (self.learning_rate * np.dot(row.T,errorLayerResults[idx-1]))
print(f'current error: {errorLayerResults[-1].sum()} at epoch:{e} and sample: {indice}')
def predict(self,input):
hiddenLayerResults=[]
for idx,layer in enumerate(self.nodesPerLayer):
if idx == 0:
continue
row = np.array([])
if idx == 1:
row = self.data['labelmap_x'][input]
row = row.reshape(1,row.size)
else:
row = hiddenLayerResults[idx-2]
hiddenLayerResults.append(actFun(self.weight0List[idx-1] + np.matmul(row,self.weightList[idx-1]),self.actfun))
arr=hiddenLayerResults[-1].tolist()[0]
maxPost = arr.index(max(arr))
return maxPost
def evaluate(self):
accu_erro = []
hiddenLayerResults=[]
for indice in range(0,len(self.data['X_test'])):
for idx,layer in enumerate(self.nodesPerLayer):
if idx == 0:
continue
row = np.array([])
if idx == 1:
row = self.data['X_test'][indice]
row = row.reshape(1,row.size)
row_y = self.data['Y_train'][indice]
else:
row = hiddenLayerResults[idx-2]
hiddenLayerResults.append(actFun(self.weight0List[idx-1] + np.matmul(row,self.weightList[idx-1]),self.actfun))
errorVec = hiddenLayerResults[-1] - row_y
accu_erro.append(errorVec.sum())
return sum(accu_erro)
def getData(fileStr,split):
'''
Function that takes bla bla:
outputs bla bla
'''
#read data from txt
data = np.genfromtxt(fileStr, delimiter=',',skip_header=1)
numberOfRows = data[0:,0].size
numberOfColumns = data[0].size
numberOfFeatColumns = numberOfColumns-1
#encode data, only numerical features assumed
#passar as colunas separadas para ca:
data_x,labelmap_x = dtEncodOneHot(data=data[:,0]) #só passar 1 coluna
data_y,labelmap_y = dtEncodOneHot(data=data[:,-1]) #só passar 1 coluna
#get test size
testsize = int(round(numberOfRows*split,0))
#split randomly data, train and test
indicesTest = np.random.choice(numberOfRows, testsize, replace=False)
indicesNTest = []
for n in range(0,numberOfRows):
if n not in indicesTest:
indicesNTest.append(n)
indicesNTest = np.array(indicesNTest)
X_train = data_x[indicesNTest]
Y_train = data_y[indicesNTest]
X_test = data_x[indicesTest]
Y_test = data_y[indicesTest]
inputSize = X_train[0].size
outputSize = Y_train[0].size
dataDic = {'X_train':X_train,'X_test':X_test,'Y_train':Y_train,'Y_test':Y_test,'data':data,'labelmap_x':labelmap_x,'labelmap_y':labelmap_y,'nFeatCols':numberOfFeatColumns
,'inputSize':inputSize,'outputSize':outputSize}
return dataDic
def dtEncodOneHot(data):
'''
Function that takes bla bla:
outputs bla bla
'''
#encode a column
uniqueFeats = np.sort(np.unique(data))
encodingDic = {}
zeros = np.zeros((uniqueFeats.size, uniqueFeats.size))
for idx,n in enumerate(zeros):
n[idx] = 1.0
key = uniqueFeats[idx]
encodingDic[key] = n
dataEnc = np.empty((1,uniqueFeats.size), np.float64)
for row in data:
vec = encodingDic[row]
dataEnc = np.append(dataEnc,vec.reshape(1,vec.size), axis=0)
dataEnc = np.delete(dataEnc, obj=0,axis=0)
return dataEnc,encodingDic
def softMax(arr):
e = 2.718281828459045
sum = 0
maxList = []
for m in arr:
for n in arr:
sum = sum + e**n
result = np.array(m/sum)
result = np.log(result)
maxList.append(result)
return max(maxList),maxList.index(max(maxList)),maxList
def actFunDeriv(transf,type_):
e = 2.718281828459045
returnVec = []
returnVec2D = []
if type(transf).__module__=='numpy':
for n in transf:
for cell in n:
if type_ == 'ReLU':
if cell < 0:
returnVec.append(0)
else:
returnVec.append(1)
if type_ == 'sigmoid':
returnVec.append(cell * (1.0 - cell))
returnVec2D.append(returnVec)
returnVec = []
return np.array(returnVec2D)
def actFun(transf,type_):
e = 2.718281828459045
returnVec = []
returnVec2D = []
if type(transf).__module__=='numpy':
for n in transf:
for cell in n:
if type_ == 'ReLU':
if cell < 0:
returnVec.append(0)
else:
returnVec.append(cell)
if type_ == 'sigmoid':
returnVec.append(1/(1+e**(-cell)))
returnVec2D.append(returnVec)
returnVec = []
return np.array(returnVec2D)
def main():
FILEPATH = '/home/jaco/Projetos/numpyPureNNMNIST/data/test_iseven.csv'
dataDic = getData(fileStr=FILEPATH,split=0.2)
nLayers = 1
nodesPerLayer = np.array([dataDic['inputSize'],16,dataDic['outputSize']])
neuralNet = simpleNN(inputSize=dataDic['inputSize'],nLayers=nLayers,outputSize=dataDic['outputSize'],nodesPerLayer=nodesPerLayer,data=dataDic,learning_rate=0.05,actfun='ReLU')
neuralNet.fit(epoch=10)
print(neuralNet.predict(1))
print(neuralNet.evaluate())
print('pred')
#unitActivation(neuralNet,dataDic,cLayer=2)
return None
if __name__ == '__main__':
main()