forked from mkskitka/creampods-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebsockets_api_example.py
97 lines (81 loc) · 3.5 KB
/
websockets_api_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#This is an example that uses the websockets api to know when a prompt execution is done
#Once the prompt execution is done it downloads the images using the /history endpoint
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse
import random
server_address = "127.0.0.1:8188"
client_id = str(uuid.uuid4())
def queue_prompt(prompt):
p = {"prompt": prompt, "client_id": client_id}
# stringify client id and workflow json
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
return response.read()
def get_history(prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
return json.loads(response.read())
def get_images(ws, prompt):
prompt_id = queue_prompt(prompt)['prompt_id']
print(f"prompt_id: {prompt_id}")
print("prompt was queued.")
output_images = {}
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
print("execution is done.")
break #Execution is done
else:
continue #previews are binary data
history = get_history(prompt_id)[prompt_id]
for o in history['outputs']:
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
if 'images' in node_output:
images_output = []
for image in node_output['images']:
image_data = get_image(image['filename'], image['subfolder'], image['type'])
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
with open("simple_interpolation_api.json", "r", encoding="utf-8") as f:
workflow_jsondata = f.read()
jsonwf = json.loads(workflow_jsondata)
numframes = random.randint(1, 10)
# jsonwf["5"]["inputs"]["frame_rate"] = numframes
jsonwf["2"]["inputs"]["multiplier"] = numframes
# "5": {
# "inputs": {
# "frame_rate": 8,
#set the text prompt for our positive CLIPTextEncode
# prompt["6"]["inputs"]["text"] = "xyz calabash"
# prompt["6"]["inputs"]["text"] = "fake, cartoon, low quality"
# random int generator here
#set the seed for our KSampler node
# prompt["3"]["inputs"]["seed"] = 5
print('testing')
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
images = get_images(ws, jsonwf)
#Commented out code to display the output images:
for node_id in images:
for image_data in images[node_id]:
from PIL import Image
import io
# output will still save if save is configured in confy ui workflow
# would be better to save here to have control over how ouput is saved
image = Image.open(io.BytesIO(image_data))
print(f"image: {prompt_id}")
# image.save(f"Output-{node_id}.png")
# image.show() #shows image in popup