-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_modulation_instability.py
103 lines (86 loc) · 3.08 KB
/
run_modulation_instability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
Example of modulation instability in highly birefringent
fibers with circularly polarized eigenmodes [1].
[1] Zołnacz, K., Tarnowski, K. L., Napiórkowski, M.,
Poturaj, K., Mergo, P., Urbanczyk, W.
Vector modulation instability in highly birefringent
fibers with circularly polarized eigenmodes.
IEEE Photonics Journal, 13(1):7100616, 2021.
"""
import numpy as np
import matplotlib.pyplot as plt
import gnlse
from cnlse import CNLSE, DubbleDispersionFiberFromTaylor
if __name__ == '__main__':
setup = gnlse.GNLSESetup()
# Numerical parameters
setup.resolution = 2**11
setup.time_window = 20 # ps
setup.z_saves = 200
# Physical parameters
setup.wavelength = 1064 # nm
w0 = 2 * np.pi * gnlse.common.c / setup.wavelength # 1/ps = THz
setup.fiber_length = 2 # m
n2 = 2.6e-20 # m^2/W
Aeff0 = 54e-12 # 1/m^2
gamma = n2 * 2 * np.pi / setup.wavelength * 1e9 / Aeff0 # 1/W/m
setup.nonlinearity = (gamma, gamma)
# The dispersion model is built from a Taylor expansion
# with coefficients given below.
loss = 0
D = -40 # ps/km/nm
beta2 = -setup.wavelength**2 * D / 2 / np.pi / gnlse.common.c * 1e-3
betas = np.array([[beta2], [beta2]])
G = 5e-4
Dbeta1 = G / (gnlse.common.c / 1e9) # ps/m
dn = 1e-4
setup.dispersion_model = DubbleDispersionFiberFromTaylor(
loss, betas, dn, Dbeta1, w0)
# Input pulse parameters
peak_power = 2000 # W
peak_noise = 1e-7 # W
# Time domain grid
t = np.linspace(-setup.time_window / 2,
setup.time_window / 2,
setup.resolution)
At = gnlse.CWEnvelope(
peak_power / 2, peak_noise / 2).A(np.concatenate((t, t)))
setup.pulse_model = At
# Nonlinear Simulation
###########################################################################
solver = CNLSE(setup)
solver.report = True
solution = solver.run()
# Visualization
###########################################################################
# prepare initial vectors
Z = solution.Z
Atx = solution.At[:setup.z_saves, :]
Aty = solution.At[setup.z_saves:, :]
AWx = solution.AW[:setup.z_saves, :]
AWy = solution.AW[setup.z_saves:, :]
lambdas = 2 * np.pi * gnlse.common.c / solution.W
V = solution.W - w0
gx = np.log(abs(AWx[-1, :]
)**2 / abs(AWx[0, :])**2) / setup.fiber_length
gy = np.log(abs(AWy[-1, :]
)**2 / abs(AWy[0, :])**2) / setup.fiber_length
plt.figure(figsize=(10, 10))
plt.subplot(3, 1, 1)
plt.title("Results for modulation instability")
plt.plot(solution.t, abs(Atx[0, :])**2)
plt.plot(solution.t, abs(Aty[0, :])**2)
plt.xlabel('t [ps]')
plt.ylabel(r'$|A|^2$ [W]')
plt.subplot(3, 1, 2)
plt.semilogy(lambdas, abs(AWx[-1, :])**2)
plt.semilogy(lambdas, abs(AWy[-1, :])**2)
plt.xlim([950, 1200])
plt.xlabel(r'$\lambda$ [nm]')
plt.ylabel('Intensity [a.u.]')
plt.subplot(3, 1, 3)
plt.plot(V, gx)
plt.plot(V, gy)
plt.xlabel(r'$\Omega$ [THz]')
plt.ylabel('Gain [1/m]')
plt.show()