forked from dreamgaussian/dreamgaussian
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmesh_renderer.py
158 lines (118 loc) · 5.58 KB
/
mesh_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import math
import cv2
import trimesh
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import nvdiffrast.torch as dr
from mesh import Mesh, safe_normalize
"""Hui note:
Renderer used in main2.py
"""
def scale_img_nhwc(x, size, mag='bilinear', min='bilinear'):
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
y = torch.nn.functional.interpolate(y, size, mode=min)
else: # Magnification
if mag == 'bilinear' or mag == 'bicubic':
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
else:
y = torch.nn.functional.interpolate(y, size, mode=mag)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
def scale_img_hwc(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
def scale_img_nhw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[..., None], size, mag, min)[..., 0]
def scale_img_hw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ..., None], size, mag, min)[0, ..., 0]
def trunc_rev_sigmoid(x, eps=1e-6):
x = x.clamp(eps, 1 - eps)
return torch.log(x / (1 - x))
def make_divisible(x, m=8):
return int(math.ceil(x / m) * m)
class Renderer(nn.Module):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.mesh = Mesh.load(self.opt.mesh, resize=False)
if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
self.glctx = dr.RasterizeGLContext()
else:
self.glctx = dr.RasterizeCudaContext()
# extract trainable parameters
self.v_offsets = nn.Parameter(torch.zeros_like(self.mesh.v))
self.raw_albedo = nn.Parameter(trunc_rev_sigmoid(self.mesh.albedo))
def get_params(self):
params = [
{'params': self.raw_albedo, 'lr': self.opt.texture_lr},
]
if self.opt.train_geo:
params.append({'params': self.v_offsets, 'lr': self.opt.geom_lr})
return params
@torch.no_grad()
def export_mesh(self, save_path):
self.mesh.v = (self.mesh.v + self.v_offsets).detach()
self.mesh.albedo = torch.sigmoid(self.raw_albedo.detach())
self.mesh.write(save_path)
def render(self, pose, proj, h0, w0, ssaa=1, bg_color=1, texture_filter='linear-mipmap-linear'):
# do super-sampling
if ssaa != 1:
h = make_divisible(h0 * ssaa, 8)
w = make_divisible(w0 * ssaa, 8)
else:
h, w = h0, w0
results = {}
# get v
if self.opt.train_geo:
v = self.mesh.v + self.v_offsets # [N, 3]
else:
v = self.mesh.v
pose = torch.from_numpy(pose.astype(np.float32)).to(v.device)
proj = torch.from_numpy(proj.astype(np.float32)).to(v.device)
# get v_clip and render rgb
v_cam = torch.matmul(F.pad(v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
v_clip = v_cam @ proj.T
rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (h, w))
alpha = (rast[0, ..., 3:] > 0).float()
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1]
depth = depth.squeeze(0) # [H, W, 1]
texc, texc_db = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft, rast_db=rast_db, diff_attrs='all')
albedo = dr.texture(self.raw_albedo.unsqueeze(0), texc, uv_da=texc_db, filter_mode=texture_filter) # [1, H, W, 3]
albedo = torch.sigmoid(albedo)
# get vn and render normal
if self.opt.train_geo:
i0, i1, i2 = self.mesh.f[:, 0].long(), self.mesh.f[:, 1].long(), self.mesh.f[:, 2].long()
v0, v1, v2 = v[i0, :], v[i1, :], v[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
face_normals = safe_normalize(face_normals)
vn = torch.zeros_like(v)
vn.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
vn.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
vn.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)
vn = torch.where(torch.sum(vn * vn, -1, keepdim=True) > 1e-20, vn, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device))
else:
vn = self.mesh.vn
normal, _ = dr.interpolate(vn.unsqueeze(0).contiguous(), rast, self.mesh.fn)
normal = safe_normalize(normal[0])
# rotated normal (where [0, 0, 1] always faces camera)
rot_normal = normal @ pose[:3, :3]
viewcos = rot_normal[..., [2]]
# antialias
albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).squeeze(0) # [H, W, 3]
albedo = alpha * albedo + (1 - alpha) * bg_color
# ssaa
if ssaa != 1:
albedo = scale_img_hwc(albedo, (h0, w0))
alpha = scale_img_hwc(alpha, (h0, w0))
depth = scale_img_hwc(depth, (h0, w0))
normal = scale_img_hwc(normal, (h0, w0))
viewcos = scale_img_hwc(viewcos, (h0, w0))
results['image'] = albedo.clamp(0, 1)
results['alpha'] = alpha
results['depth'] = depth
results['normal'] = (normal + 1) / 2
results['viewcos'] = viewcos
return results