-
Notifications
You must be signed in to change notification settings - Fork 2
/
64. Minimum Path Sum.py
33 lines (32 loc) · 1 KB
/
64. Minimum Path Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Given a m x n grid filled with non-negative numbers,
# find a path from top left to bottom right which minimizes the sum of all numbers along its path.
# Note: You can only move either down or right at any point in time.
# Example:
# Input:
# [
# [1,3,1],
# [1,5,1],
# [4,2,1]
# ]
# Output: 7
# Explanation: Because the path 1→3→1→1→1 minimizes the sum.
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
# DP O(mn)
if not grid or not grid[0]:
return 0
m, n = len(grid), len(grid[0])
dp = [[float('inf')] * n for _ in range(m)]
dp[0][0] = grid[0][0]
for i in range(1, m):
dp[i][0] = grid[i][0] + dp[i - 1][0]
for j in range(1, n):
dp[0][j] = grid[0][j] + dp[0][j - 1]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1])
return dp[m-1][n-1]