-
Notifications
You must be signed in to change notification settings - Fork 23
/
NFM.py
575 lines (511 loc) · 24.8 KB
/
NFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# -*- coding:utf-8 -*-
"""
Created on Dec 10, 2017
@author: jachin,Nie
Editted by Wei Deng, July 10, 2019
A pytorch implementation of NFM
"""
import os
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics import roc_auc_score
from time import time
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import torch.backends.cudnn
"""
网络结构部分
"""
class NFM(torch.nn.Module):
"""
:parameter
-------------
field_size: size of the feature fields
feature_sizes: a field_size-dim array, sizes of the feature dictionary
embedding_size: size of the feature embedding
is_shallow_dropout: bool, shallow part(fm or ffm part) uses dropout or not?
dropout_shallow: an array of the size of 1, example:[0.5], the element is for the-first order part
h_depth: deep network's hidden layers' depth
deep_layers: a h_depth-dim array, each element is the size of corresponding hidden layers. example:[32,32] h_depth = 2
is_deep_dropout: bool, deep part uses dropout or not?
dropout_deep: an array of dropout factors,example:[0.5,0.5,0.5] h_depth=2
deep_layers_activation: relu or sigmoid etc
n_epochs: epochs
batch_size: batch_size
learning_rate: learning_rate
optimizer_type: optimizer_type, 'adam', 'rmsp', 'sgd', 'adag'
is_batch_norm:bool, use batch_norm or not ?
verbose: verbose
weight_decay: weight decay (L2 penalty)
use_fm: bool
use_ffm: bool
interation_type: bool, When it's true, the element-wise product of the fm or ffm embeddings will be added together, otherwise, the element-wise prodcut of embeddings will be concatenated.
loss_type: "logloss", only
eval_metric: roc_auc_score
use_cuda: bool use gpu or cpu?
n_class: number of classes. is bounded to 1
greater_is_better: bool. Is the greater eval better?
Attention: only support logsitcs regression
"""
def __init__(self,field_size, feature_sizes, embedding_size = 10, is_shallow_dropout = False, dropout_shallow = [0.5],
h_depth = 3, deep_layers = [400, 400, 400], is_deep_dropout = True, dropout_deep=[0.0, 0.5, 0.5, 0.5],
deep_layers_activation = 'relu', n_epochs = 10, batch_size = 256, learning_rate = 0.003,
optimizer_type = 'adam', is_batch_norm = False, verbose = False, random_seed = 0, weight_decay = 0.0,
use_fm = True, use_ffm = False, interation_type = True,loss_type = 'logloss', eval_metric = roc_auc_score,
use_cuda = True, n_class = 1, greater_is_better = True, num=13
):
super(NFM, self).__init__()
self.field_size = field_size
self.feature_sizes = feature_sizes
self.embedding_size = embedding_size
self.is_shallow_dropout = is_shallow_dropout
self.dropout_shallow = dropout_shallow
self.h_depth = h_depth
self.deep_layers = deep_layers
self.is_deep_dropout = is_deep_dropout
self.dropout_deep = dropout_deep
self.deep_layers_activation = deep_layers_activation
self.n_epochs = n_epochs
self.batch_size = batch_size
self.learning_rate = learning_rate
self.optimizer_type = optimizer_type
self.is_batch_norm = is_batch_norm
self.num = num
self.verbose = verbose
self.weight_decay = weight_decay
self.random_seed = random_seed
self.use_fm = use_fm
self.use_ffm = use_ffm
self.interation_type = interation_type
self.loss_type = loss_type
self.eval_metric = eval_metric
self.use_cuda = use_cuda
self.n_class = n_class
self.greater_is_better = greater_is_better
torch.manual_seed(self.random_seed)
"""
check cuda
"""
if self.use_cuda and not torch.cuda.is_available():
self.use_cuda = False
print("Cuda is not available, automatically changed into cpu model")
"""
check use fm or ffm
"""
if self.use_fm and self.use_ffm:
print("only support one type only, please make sure to choose only fm or ffm part")
exit(1)
elif self.use_fm:
print("The model is nfm(fm+nn layers)")
elif self.use_ffm:
print("The model is nffm(ffm+nn layers)")
else:
print("You have to choose more than one of (fm, ffm) models to use")
exit(1)
"""
bias
"""
self.bias = torch.nn.Parameter(torch.randn(1))
"""
fm part
"""
if self.use_fm:
print("Init fm part")
self.fm_first_order_embeddings = nn.ModuleList([nn.Embedding(feature_size,1) for feature_size in self.feature_sizes])
if self.dropout_shallow:
self.fm_first_order_dropout = nn.Dropout(self.dropout_shallow[0])
self.fm_second_order_embeddings = nn.ModuleList([nn.Embedding(feature_size, self.embedding_size) for feature_size in self.feature_sizes])
print("Init fm part succeed")
"""
ffm part
"""
if self.use_ffm:
print("Init ffm part")
self.ffm_first_order_embeddings = nn.ModuleList([nn.Embedding(feature_size,1) for feature_size in self.feature_sizes])
if self.dropout_shallow:
self.ffm_first_order_dropout = nn.Dropout(self.dropout_shallow[0])
self.ffm_second_order_embeddings = nn.ModuleList([nn.ModuleList([nn.Embedding(feature_size, self.embedding_size) for i in range(self.field_size)]) for feature_size in self.feature_sizes])
print("Init ffm part succeed")
"""
deep part
"""
print("Init deep part")
if self.is_deep_dropout:
self.linear_0_dropout = nn.Dropout(self.dropout_deep[0])
if self.interation_type:
self.linear_1 = nn.Linear(self.embedding_size, deep_layers[0])
else:
self.linear_1 = nn.Linear(self.field_size*(self.field_size-1)/2, deep_layers[0])
if self.is_batch_norm:
self.batch_norm_1 = nn.BatchNorm1d(deep_layers[0])
if self.is_deep_dropout:
self.linear_1_dropout = nn.Dropout(self.dropout_deep[1])
for i, h in enumerate(self.deep_layers[1:], 1):
setattr(self, 'linear_' + str(i + 1), nn.Linear(self.deep_layers[i - 1], self.deep_layers[i]))
if self.is_batch_norm:
setattr(self, 'batch_norm_' + str(i + 1), nn.BatchNorm1d(deep_layers[i]))
if self.is_deep_dropout:
setattr(self, 'linear_' + str(i + 1) + '_dropout', nn.Dropout(self.dropout_deep[i + 1]))
print("Init deep part succeed")
print "Init succeed"
def forward(self, Xi, Xv):
"""
:param Xi_train: index input tensor, batch_size * k * 1
:param Xv_train: value input tensor, batch_size * k * 1
:return: the last output
"""
"""
fm part
"""
if self.use_fm:
#fm_first_order_emb_arr = [(torch.sum(emb(Xi[:,i,:]),1).t()*Xv[:,i]).t() for i, emb in enumerate(self.fm_first_order_embeddings)]
Tzero = torch.zeros(Xi.shape[0], 1, dtype=torch.long)
if self.use_cuda:
Tzero = Tzero.cuda()
fm_first_order_emb_arr = [(torch.sum(emb(Tzero), 1).t()*Xv[:,i]).t() if i < self.num else torch.sum(emb(Xi[:,i-self.num,:]),1) \
for i, emb in enumerate(self.fm_first_order_embeddings)]
fm_first_order = torch.cat(fm_first_order_emb_arr,1)
if self.is_shallow_dropout:
fm_first_order = self.fm_first_order_dropout(fm_first_order)
if self.interation_type:
# use 2xy = (x+y)^2 - x^2 - y^2 reduce calculation
#fm_second_order_emb_arr = [(torch.sum(emb(Xi[:,i,:]),1).t()*Xv[:,i]).t() for i, emb in enumerate(self.fm_second_order_embeddings)]
fm_second_order_emb_arr = [(torch.sum(emb(Tzero), 1).t()*Xv[:,i]).t() if i < self.num else torch.sum(emb(Xi[:,i-self.num,:]),1) \
for i, emb in enumerate(self.fm_second_order_embeddings)]
fm_sum_second_order_emb = sum(fm_second_order_emb_arr)
fm_sum_second_order_emb_square = fm_sum_second_order_emb*fm_sum_second_order_emb # (x+y)^2
fm_second_order_emb_square = [item*item for item in fm_second_order_emb_arr]
fm_second_order_emb_square_sum = sum(fm_second_order_emb_square) #x^2+y^2
fm_second_order = (fm_sum_second_order_emb_square - fm_second_order_emb_square_sum) * 0.5
else:
#fm_second_order_emb_arr = [(torch.sum(emb(Xi[:, i, :]), 1).t() * Xv[:, i]).t() for i, emb in enumerate(self.fm_second_order_embeddings)]
fm_second_order_emb_arr = [(torch.sum(emb(Tzero), 1).t()*Xv[:,i]).t() if i < self.num else torch.sum(emb(Xi[:,i-self.num,:]),1) \
for i, emb in enumerate(self.fm_second_order_embeddings)]
fm_wij_arr = []
for i in range(self.field_size):
for j in range(i + 1, self.field_size):
fm_wij_arr.append(fm_second_order_emb_arr[i] * fm_second_order_emb_arr[j])
"""
ffm part
"""
if self.use_ffm:
ffm_first_order_emb_arr = [(torch.sum(emb(Xi[:,i,:]),1).t()*Xv[:,i]).t() for i, emb in enumerate(self.ffm_first_order_embeddings)]
ffm_first_order = torch.cat(ffm_first_order_emb_arr,1)
if self.is_shallow_dropout:
ffm_first_order = self.ffm_first_order_dropout(ffm_first_order)
ffm_second_order_emb_arr = [[(torch.sum(emb(Xi[:,i,:]), 1).t() * Xv[:,i]).t() for emb in f_embs] for i, f_embs in enumerate(self.ffm_second_order_embeddings)]
ffm_wij_arr = []
for i in range(self.field_size):
for j in range(i+1, self.field_size):
ffm_wij_arr.append(ffm_second_order_emb_arr[i][j]*ffm_second_order_emb_arr[j][i])
ffm_second_order = sum(ffm_wij_arr)
"""
deep part
"""
if self.use_fm and self.interation_type:
deep_emb = fm_second_order
elif self.use_ffm and self.interation_type:
deep_emb = ffm_second_order
elif self.use_fm:
deep_emb = torch.cat([torch.sum(fm_wij,1).view([-1,1]) for fm_wij in fm_wij_arr], 1)
else:
deep_emb = torch.cat([torch.sum(ffm_wij,1).view([-1,1]) for ffm_wij in ffm_wij_arr],1)
if self.deep_layers_activation == 'sigmoid':
activation = F.sigmoid
elif self.deep_layers_activation == 'tanh':
activation = F.tanh
else:
activation = F.relu
if self.is_deep_dropout:
deep_emb = self.linear_0_dropout(deep_emb)
x_deep = self.linear_1(deep_emb)
if self.is_batch_norm:
x_deep = self.batch_norm_1(x_deep)
x_deep = activation(x_deep)
if self.is_deep_dropout:
x_deep = self.linear_1_dropout(x_deep)
for i in range(1, len(self.deep_layers)):
x_deep = getattr(self, 'linear_' + str(i + 1))(x_deep)
if self.is_batch_norm:
x_deep = getattr(self, 'batch_norm_' + str(i + 1))(x_deep)
x_deep = activation(x_deep)
if self.is_deep_dropout:
x_deep = getattr(self, 'linear_' + str(i + 1) + '_dropout')(x_deep)
"""
sum
"""
if self.use_fm:
total_sum = self.bias+ torch.sum(fm_first_order,1) + torch.sum(x_deep,1)
elif self.use_ffm:
total_sum = self.bias + torch.sum(ffm_first_order, 1) + torch.sum(x_deep, 1)
return total_sum
def fit(self, Xi_train, Xv_train, y_train, Xi_valid=None, Xv_valid=None,
y_valid = None, ealry_stopping=False, refit=False, save_path = None):
"""
:param Xi_train: [[ind1_1, ind1_2, ...], [ind2_1, ind2_2, ...], ..., [indi_1, indi_2, ..., indi_j, ...], ...]
indi_j is the feature index of feature field j of sample i in the training set
:param Xv_train: [[val1_1, val1_2, ...], [val2_1, val2_2, ...], ..., [vali_1, vali_2, ..., vali_j, ...], ...]
vali_j is the feature value of feature field j of sample i in the training set
vali_j can be either binary (1/0, for binary/categorical features) or float (e.g., 10.24, for numerical features)
:param y_train: label of each sample in the training set
:param Xi_valid: list of list of feature indices of each sample in the validation set
:param Xv_valid: list of list of feature values of each sample in the validation set
:param y_valid: label of each sample in the validation set
:param ealry_stopping: perform early stopping or not
:param refit: refit the model on the train+valid dataset or not
:param save_path: the path to save the model
:return:
"""
"""
pre_process
"""
if save_path and not os.path.exists('/'.join(save_path.split('/')[0:-1])):
print("Save path is not existed!")
return
if self.verbose:
print("pre_process data ing...")
is_valid = False
Xi_train = np.array(Xi_train).reshape((-1,self.field_size-self.num, 1))
Xv_train = np.array(Xv_train)
y_train = np.array(y_train)
x_size = Xi_train.shape[0]
if Xi_valid:
Xi_valid = np.array(Xi_valid).reshape((-1,self.field_size-self.num, 1))
Xv_valid = np.array(Xv_valid)
y_valid = np.array(y_valid)
x_valid_size = Xi_valid.shape[0]
is_valid = True
if self.verbose:
print("pre_process data finished")
"""
train model
"""
model = self.train()
optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
if self.optimizer_type == 'adam':
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
elif self.optimizer_type == 'rmsp':
optimizer = torch.optim.RMSprop(self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
elif self.optimizer_type == 'adag':
optimizer = torch.optim.Adagrad(self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
criterion = F.binary_cross_entropy_with_logits
train_result = []
valid_result = []
num_total = 0
print('========')
for name, param in model.named_parameters():
print name, param.data.shape
num_total += np.prod(param.data.shape)
print("Number of total parameters: %d"% (num_total))
for epoch in range(self.n_epochs):
total_loss = 0.0
batch_iter = x_size // self.batch_size
epoch_begin_time = time()
batch_begin_time = time()
for i in range(batch_iter+1):
offset = i*self.batch_size
end = min(x_size, offset+self.batch_size)
if offset == end:
break
batch_xi = Variable(torch.LongTensor(Xi_train[offset:end]))
batch_xv = Variable(torch.FloatTensor(Xv_train[offset:end]))
batch_y = Variable(torch.FloatTensor(y_train[offset:end]))
if self.use_cuda:
batch_xi, batch_xv, batch_y = batch_xi.cuda(), batch_xv.cuda(), batch_y.cuda()
optimizer.zero_grad()
outputs = model(batch_xi, batch_xv)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
total_loss += loss.data.item()
if self.verbose:
if i % 100 == 99: # print every 100 mini-batches
eval = self.evaluate(batch_xi, batch_xv, batch_y)
print('[%d, %5d] loss: %.6f metric: %.6f time: %.1f s' %
(epoch + 1, i + 1, total_loss/100.0, eval, time()-batch_begin_time))
total_loss = 0.0
batch_begin_time = time()
train_loss, train_eval = self.eval_by_batch(Xi_train,Xv_train,y_train,x_size)
train_result.append(train_eval)
print('*'*50)
print('Training [%d] loss: %.6f metric: %.6f time: %.1f s' %
(epoch + 1, train_loss, train_eval, time()-epoch_begin_time))
if is_valid:
valid_loss, valid_eval = self.eval_by_batch(Xi_valid, Xv_valid, y_valid, x_valid_size)
valid_result.append(valid_eval)
print('Validation [%d] loss: %.6f metric: %.6f time: %.1f s' %
(epoch + 1, valid_loss, valid_eval,time()-epoch_begin_time))
if save_path:
torch.save(self.state_dict(),save_path)
if is_valid and ealry_stopping and self.training_termination(valid_result):
print("early stop at [%d] epoch!" % (epoch+1))
break
# fit a few more epoch on train+valid until result reaches the best_train_score
if is_valid and refit:
if self.verbose:
print("refitting the model")
if self.greater_is_better:
best_epoch = np.argmax(valid_result)
else:
best_epoch = np.argmin(valid_result)
best_train_score = train_result[best_epoch]
Xi_train = np.concatenate((Xi_train,Xi_valid))
Xv_train = np.concatenate((Xv_train,Xv_valid))
y_train = np.concatenate((y_train,y_valid))
x_size = x_size + x_valid_size
self.shuffle_in_unison_scary(Xi_train,Xv_train,y_train)
for epoch in range(64):
batch_iter = x_size // self.batch_size
for i in range(batch_iter + 1):
offset = i * self.batch_size
end = min(x_size, offset + self.batch_size)
if offset == end:
break
batch_xi = Variable(torch.LongTensor(Xi_train[offset:end]))
batch_xv = Variable(torch.FloatTensor(Xv_train[offset:end]))
batch_y = Variable(torch.FloatTensor(y_train[offset:end]))
if self.use_cuda:
batch_xi, batch_xv, batch_y = batch_xi.cuda(), batch_xv.cuda(), batch_y.cuda()
optimizer.zero_grad()
outputs = model(batch_xi, batch_xv)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
train_loss, train_eval = self.eval_by_batch(Xi_train, Xv_train, y_train, x_size)
if save_path:
torch.save(self.state_dict(), save_path)
if abs(best_train_score-train_eval) < 0.001 or \
(self.greater_is_better and train_eval > best_train_score) or \
((not self.greater_is_better) and train_result < best_train_score):
break
if self.verbose:
print("refit finished")
def eval_by_batch(self,Xi, Xv, y, x_size):
total_loss = 0.0
y_pred = []
if self.use_ffm:
batch_size = 16384*2
else:
batch_size = 16384
batch_iter = x_size // batch_size
criterion = F.binary_cross_entropy_with_logits
model = self.eval()
for i in range(batch_iter+1):
offset = i * batch_size
end = min(x_size, offset + batch_size)
if offset == end:
break
batch_xi = Variable(torch.LongTensor(Xi[offset:end]))
batch_xv = Variable(torch.FloatTensor(Xv[offset:end]))
batch_y = Variable(torch.FloatTensor(y[offset:end]))
if self.use_cuda:
batch_xi, batch_xv, batch_y = batch_xi.cuda(), batch_xv.cuda(), batch_y.cuda()
# self.print_embedding_prod(batch_xi,batch_xv)
outputs = model(batch_xi, batch_xv)
pred = F.sigmoid(outputs).cpu()
y_pred.extend(pred.data.numpy())
loss = criterion(outputs, batch_y)
total_loss += loss.data.item()*(end-offset)
total_metric = self.eval_metric(y,y_pred)
return total_loss/x_size, total_metric
# shuffle three lists simutaneously
def shuffle_in_unison_scary(self, a, b, c):
rng_state = np.random.get_state()
np.random.shuffle(a)
np.random.set_state(rng_state)
np.random.shuffle(b)
np.random.set_state(rng_state)
np.random.shuffle(c)
def training_termination(self, valid_result):
if len(valid_result) > 4:
if self.greater_is_better:
if valid_result[-1] < valid_result[-2] and \
valid_result[-2] < valid_result[-3] and \
valid_result[-3] < valid_result[-4]:
return True
else:
if valid_result[-1] > valid_result[-2] and \
valid_result[-2] > valid_result[-3] and \
valid_result[-3] > valid_result[-4]:
return True
return False
def predict(self, Xi, Xv):
"""
:param Xi: the same as fit function
:param Xv: the same as fit function
:return: output, ont-dim array
"""
Xi = np.array(Xi).reshape((-1,self.field_size,1))
Xi = Variable(torch.LongTensor(Xi))
Xv = Variable(torch.FloatTensor(Xv))
if self.use_cuda and torch.cuda.is_available():
Xi, Xv = Xi.cuda(), Xv.cuda()
model = self.eval()
pred = F.sigmoid(model(Xi, Xv)).cpu()
return (pred.data.numpy() > 0.5)
def predict_proba(self, Xi, Xv):
Xi = np.array(Xi).reshape((-1, self.field_size, 1))
Xi = Variable(torch.LongTensor(Xi))
Xv = Variable(torch.FloatTensor(Xv))
if self.use_cuda and torch.cuda.is_available():
Xi, Xv = Xi.cuda(), Xv.cuda()
model = self.eval()
pred = F.sigmoid(model(Xi, Xv)).cpu()
return pred.data.numpy()
def inner_predict(self, Xi, Xv):
"""
:param Xi: tensor of feature index
:param Xv: tensor of feature value
:return: output, numpy
"""
model = self.eval()
pred = F.sigmoid(model(Xi, Xv)).cpu()
return (pred.data.numpy() > 0.5)
def inner_predict_proba(self, Xi, Xv):
"""
:param Xi: tensor of feature index
:param Xv: tensor of feature value
:return: output, numpy
"""
model = self.eval()
pred = F.sigmoid(model(Xi, Xv)).cpu()
return pred.data.numpy()
def evaluate(self, Xi, Xv, y):
"""
:param Xi: tensor of feature index
:param Xv: tensor of feature value
:param y: tensor of labels
:return: metric of the evaluation
"""
y_pred = self.inner_predict_proba(Xi, Xv)
return self.eval_metric(y.cpu().data.numpy(), y_pred)
def print_embedding_prod(self,Xi,Xv):
if not self.use_fm:
print "Error! Only print fm model!"
return
fm_second_order_emb_arr = [(torch.sum(emb(Xi[:, i, :]), 1).t() * Xv[:, i]).t() for i, emb in
enumerate(self.fm_second_order_embeddings)]
total_prod = fm_second_order_emb_arr[0] + 1.0
for emb in fm_second_order_emb_arr[1:]:
total_prod = total_prod * (emb + 1.0)
print "max:", torch.max(total_prod)
print "min", torch.min(total_prod)
"""
test part
"""
import sys
from utils import data_preprocess
criteo_num_feat_dim = set([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
#result_dict = data_preprocess.read_data('./data/tiny_train_input.csv', './data/category_emb', criteo_num_feat_dim, feature_dim_start=0, dim=39)
#test_dict = data_preprocess.read_data('./data/tiny_test_input.csv', './data/category_emb', criteo_num_feat_dim, feature_dim_start=0, dim=39)
result_dict = data_preprocess.read_data('./data/large/train.csv', './data/large/criteo_feature_map', criteo_num_feat_dim, feature_dim_start=1, dim=39)
test_dict = data_preprocess.read_data('./data/large/valid.csv', './data/large/criteo_feature_map', criteo_num_feat_dim, feature_dim_start=1, dim=39)
with torch.cuda.device(1):
nfm = NFM(39, result_dict['feature_sizes'], batch_size=2048, is_shallow_dropout=False, verbose=True, use_cuda=True,
weight_decay=3e-7, use_fm=True, use_ffm=False, interation_type=False, learning_rate=1e-3).cuda()
nfm.fit(result_dict['index'], result_dict['value'], result_dict['label'],
test_dict['index'], test_dict['value'], test_dict['label'], refit=False)