-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar.py
365 lines (304 loc) · 12.6 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import argparse
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision
import torchvision.transforms as transforms
import torch.nn.functional as F
from distributed_optimization import get_distributed_optimizer
parser = argparse.ArgumentParser(description='PyTorch cifar Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int,
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23457', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--local-steps', default=16, type=int,
help='number of local steps per reduce (default 16)')
parser.add_argument('--initial-steps', default=0, type=int,
help='number of initial small batchsize steps (default 0)')
parser.add_argument('--initial-step-method', default='single_process', type=str,
help='methods to perform initial steps. 1: \'multiple_processes\':'
'perform it on all processes and average for each step.'
'2: \'single_process\': perform it on one process and broadcast'
'its model after initial steps')
best_acc1 = 0
best_acc5 = 0
from distributed_optimization import get_distributed_optimizer
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
ngpus_per_node = torch.cuda.device_count()
args.world_size = ngpus_per_node
print('Start training')
print('Local-steps = {ls}, #GPU = {size}, #Epochs = {ne}'.format(
ls=args.local_steps, size=args.world_size, ne=args.epochs
))
# Use torch.multiprocessing.spawn to launch distributed processes:
# the main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
# Define a CNN
class CNNModule(nn.Module):
def __init__(self):
super(CNNModule, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
global best_acc5
args.gpu = gpu
args.rank = gpu
args.group = list(range(args.world_size))
dist.init_process_group(backend=args.dist_backend,
init_method=args.dist_url, world_size=args.world_size, rank=args.rank)
model = CNNModule()
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
# Define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
arg_dict = {
'local_steps': args.local_steps,
'initial_steps': args.initial_steps,
'initial_step_method': args.initial_step_method,
}
local_optimizer = torch.optim.SGD(
model.parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay
)
optimizer = get_distributed_optimizer(
'local_sgd',
local_optimizer,
args.rank,
args.world_size,
args.group,
arg_dict
)
# Data loading code
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root=args.data,
train=True, download=True, transform=transform)
val_dataset = torchvision.datasets.CIFAR10(root=args.data,
train=False, download=True, transform=transform)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers,
pin_memory=True, sampler=train_sampler
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True
)
avg_training_time = 0
for epoch in range(args.epochs):
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer.local_optimizer, epoch, args)
# Train for one epoch
avg_training_time += train(train_loader, model,
criterion, optimizer, epoch, args)
# Evaluate on validation set
acc1, acc5 = validate(val_loader, model, criterion, args)
# Remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
best_acc5 = max(acc5, best_acc5)
if args.rank % ngpus_per_node == 0:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best)
print('Final Statistics. GPU {gpu}, avg training time: {a:.3f}'.format(
gpu=args.gpu,
a=1000 * avg_training_time / args.epochs)
+ 'ms per iteration'
)
if args.gpu == 0:
print('Best top1 accuracy {acc1}, Best top5 accuracy {acc5}'.format(
acc1=best_acc1, acc5=best_acc5
)
)
def train(train_loader, model, criterion, optimizer, epoch, args):
training_time = AverageMeter('Training Time', ':6.3f')
data_time = AverageMeter('Data Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[training_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
model.train()
data_end = time.time()
for i, (images, target) in enumerate(train_loader):
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# Measure the data loading time
data_time.update(time.time() - data_end)
training_end = time.time()
# Compute output
output = model(images)
loss = criterion(output, target)
# Compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Measure training time
training_time.update(time.time() - training_end)
# Measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
if i > 0 and i % args.print_freq == 0:
progress.display(i)
data_end = time.time()
print("GPU {gpu}, epoch {epoch}, Average training time {time:.3f}ms"
.format(gpu=args.gpu, epoch=epoch,
time=1000 * training_time.avg))
return training_time.avg
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# Switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for _, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
output = model(images)
loss = criterion(output, target)
# Measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# TODO: this should also be done with the ProgressMeter
if args.gpu == 0:
print('*Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.
format(top1=top1, top5=top5))
print(' ')
return top1.avg, top5.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()