-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
161 lines (112 loc) · 6.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import argparse
import albumentations
from albumentations import HorizontalFlip, Resize, RandomResizedCrop
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import processing
from utils import build_loss, misc
from model.build_model import build_model
from datasets.build_dataset import dataset_generator
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--workers', type=int, default=8,
metavar='N', help='Dataloader threads.')
parser.add_argument('--batch_size', type=int, default=16,
help='You can override model batch size by specify positive number.')
parser.add_argument('--device', type=str, default='cuda',
help="Whether use cuda, 'cuda' or 'cpu'.")
parser.add_argument('--epochs', type=int, default=60,
help='Epochs number.')
parser.add_argument('--lr', type=int, default=1e-4,
help='Learning rate.')
parser.add_argument('--save_path', type=str, default="./logs",
help='Where to save logs and checkpoints.')
parser.add_argument('--dataset_path', type=str, default=r".\iHarmony4",
help='Dataset path.')
parser.add_argument('--print_freq', type=int, default=100,
help='Number of iterations then print.')
parser.add_argument('--base_size', type=int, default=256,
help='Base size. Resolution of the image input into the Encoder')
parser.add_argument('--input_size', type=int, default=256,
help='Input size. Resolution of the image that want to be generated by the Decoder')
parser.add_argument('--INR_input_size', type=int, default=256,
help='INR input size. Resolution of the image that want to be generated by the Decoder. '
'Should be the same as `input_size`')
parser.add_argument('--INR_MLP_dim', type=int, default=32,
help='Number of channels for INR linear layer.')
parser.add_argument('--LUT_dim', type=int, default=7,
help='Dim of the output LUT. Refer to https://ieeexplore.ieee.org/abstract/document/9206076')
parser.add_argument('--activation', type=str, default='leakyrelu_pe',
help='INR activation layer type: leakyrelu_pe, sine')
parser.add_argument('--pretrained', type=str,
default=None,
help='Pretrained weight path')
parser.add_argument('--param_factorize_dim', type=int,
default=10,
help='The intermediate dimensions of the factorization of the predicted MLP parameters. '
'Refer to https://arxiv.org/abs/2011.12026')
parser.add_argument('--embedding_type', type=str,
default="CIPS_embed",
help='Which embedding_type to use.')
parser.add_argument('--optim', type=str,
default='adamw',
help='Which optimizer to use.')
parser.add_argument('--INRDecode', action="store_false",
help='Whether INR decoder. Set it to False if you want to test the baseline '
'(https://github.com/SamsungLabs/image_harmonization)')
parser.add_argument('--isMoreINRInput', action="store_false",
help='Whether to cat RGB and mask. See Section 3.4 in the paper.')
parser.add_argument('--hr_train', action="store_true",
help='Whether use hr_train. See section 3.4 in the paper.')
parser.add_argument('--isFullRes', action="store_true",
help='Whether for original resolution. See section 3.4 in the paper.')
opt = parser.parse_args()
opt.save_path = misc.increment_path(os.path.join(opt.save_path, "exp1"))
try:
import wandb
opt.wandb = True
wandb.init(config=opt, project="INR_Harmonization", name=os.path.basename(opt.save_path))
except:
opt.wandb = False
return opt
def main_process(opt):
logger = misc.create_logger(os.path.join(opt.save_path, "log.txt"))
cudnn.benchmark = True
trainset_path = os.path.join(opt.dataset_path, "IHD_train.txt")
valset_path = os.path.join(opt.dataset_path, "IHD_test.txt")
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
torch_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(opt.transform_mean, opt.transform_var)])
trainset_alb_transform = albumentations.Compose(
[
RandomResizedCrop(opt.input_size, opt.input_size, scale=(0.5, 1.0)),
HorizontalFlip()],
additional_targets={'real_image': 'image', 'object_mask': 'image'}
)
valset_alb_transform = albumentations.Compose([Resize(opt.input_size, opt.input_size)],
additional_targets={'real_image': 'image', 'object_mask': 'image'})
trainset = dataset_generator(trainset_path, trainset_alb_transform, torch_transform, opt, mode='Train')
valset = dataset_generator(valset_path, valset_alb_transform, torch_transform, opt, mode='Val')
train_loader = DataLoader(trainset, opt.batch_size, shuffle=True, drop_last=True,
pin_memory=True,
num_workers=opt.workers, persistent_workers=True)
val_loader = DataLoader(valset, opt.batch_size, shuffle=False, drop_last=False, pin_memory=True,
num_workers=opt.workers, persistent_workers=True)
model = build_model(opt).to(opt.device)
loss_fn = build_loss.loss_generator()
optimizer_params = {
'lr': opt.lr,
'weight_decay': 1e-2
}
optimizer = misc.get_optimizer(model, opt.optim, optimizer_params)
scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.epochs * len(train_loader),
pct_start=0.0)
processing.train(train_loader, val_loader, model, optimizer, scheduler, loss_fn, logger, opt)
if __name__ == '__main__':
opt = parse_args()
os.makedirs(opt.save_path, exist_ok=True)
main_process(opt)