-
Notifications
You must be signed in to change notification settings - Fork 0
/
pca_with_substraction_Erfolgreichsrate_versuchen.py
265 lines (178 loc) · 6.54 KB
/
pca_with_substraction_Erfolgreichsrate_versuchen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import print_function
from __future__ import division
from math import atan2, cos, sin, sqrt, pi
from os import listdir
import numpy as np
from random import randint
from mahotas import features
from sklearn.decomposition import PCA
import math
import cv2
#Funktionsdefinitionen
def invert_image(img):
return (255-img)
def add_images(img1, img2):
temp = invert_image(img1) + invert_image(img2)
return invert_image(temp)
def add_images4(img1, img2, img3, img4):
temp = invert_image(img1) + invert_image(img2) + invert_image(img3) + invert_image(img4)
return invert_image(temp)
def translate(img, x, y):
rows, cols = img.shape
M = np.float32([[1,0,x], [0,1,y]])
img = cv2.warpAffine(img, M, (cols,rows), borderMode = cv2.BORDER_REPLICATE)
return img
def rotate(img, winkel):
rows, cols = img.shape
# Argumente: Center, Angle, Scale
M = cv2.getRotationMatrix2D((cols/2,rows/2),winkel,1)
img = cv2.warpAffine(img, M, (cols,rows), borderMode = cv2.BORDER_REPLICATE)
return img
# Generate Scene
def generateScene():
line_styles = ["dreieck", "ellipse", "gerade", "rechteck"]
orientierung = ["links", "oben", "rechts", "unten"]
path0 = ["", "", "", ""]
path1 = ["", "", "", ""]
for num in range(4):
path0[num] = "Kanten/" + "kante_" + orientierung[num] + "_" + line_styles[randint(0, 3)] + ".png"
for num in range(4):
path1[num] = "Kanten/" + "kante_" + orientierung[num] + "_" + line_styles[randint(0, 3)] + ".png"
path1[1] = path0[3]
img0 = []
img1 = []
for num in range(4):
img0.append(cv2.imread(path0[num], 0))
img1.append(cv2.imread(path1[num], 0))
img1[1] = translate(img1[1], 0, -100)
obj0 = add_images4(img0[0], img0[1], img0[2], img0[3])
obj1 = add_images4(img1[0], img1[1], img1[2], img1[3])
obj1 = translate(obj1, 0, 100)
return add_images(obj0,obj1)
# Flächenschwerpunkt berechnen
def calcCentroid(img):
moments = cv2.moments(img, False)
cX = float(moments["m10"] / moments["m00"])
cY = float(moments["m01"] / moments["m00"])
return [cX, cY]
def fillContour(img):
# Threshold.
# Set values equal to or above 220 to 0.
# Set values below 220 to 255.
th, im_th = cv2.threshold(img, 220, 255, cv2.THRESH_BINARY_INV);
# Copy the thresholded image.
im_floodfill = im_th.copy()
# Mask used to flood filling.
# Notice the size needs to be 2 pixels than the image.
h, w = im_th.shape[:2]
mask = np.zeros((h+2, w+2), np.uint8)
# Floodfill from point (0, 0)
cv2.floodFill(im_floodfill, mask, (0,0), 255);
# Invert floodfilled image
im_floodfill_inv = cv2.bitwise_not(im_floodfill)
# Combine the two images to get the foreground.
img_out = im_th | im_floodfill_inv
return invert_image(img_out)
def pca(img):
# Convert image to binary
_, bw = cv2.threshold(img, 50, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
contours, _ = cv2.findContours(bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# PCA for everything
contour_size = 0
for i, contour in enumerate(contours):
area = cv2.contourArea(contour)
# Ignore contours that are too small or too large
if area < 1e2 or 1e5 < area:
continue
contour_size += len(contour)
all_data_pts = np.empty((contour_size, 2), dtype=np.float64)
k = 0
for i, contour in enumerate(contours):
area = cv2.contourArea(contour)
# Ignore contours that are too small or too large
if area < 1e2 or 1e5 < area:
continue
sz = len(contour)
data_pts = np.empty((sz, 2), dtype=np.float64)
# cv2.drawContours(scene, contours, i, (0, 255, 0), 3)
for i in range(data_pts.shape[0]):
data_pts[i,0] = contour[i,0,0]
data_pts[i,1] = contour[i,0,1]
all_data_pts[i+k,0] = contour[i,0,0]
all_data_pts[i+k,1] = contour[i,0,1]
k += len(contour)
# import sys
# np.set_printoptions(threshold=sys.maxsize)
# print("{}".format(all_data_pts))
# Perform PCA analysis
mean = np.empty((0))
mean, eigenvectors, eigenvalues = cv2.PCACompute2(all_data_pts, mean)
rows, cols = img.shape
count = 0
for y in range(rows):
for x in range(cols):
if bw[y, x] <= 50:
count += 1
a = np.empty((count, 2), dtype=np.float64)
cc = 0
for y in range(rows):
for x in range(cols):
if bw[y, x] <= 50:
a[cc, 0] = x
a[cc, 1] = y
cc += 1
# PCA mit sklearn
pca = PCA(n_components=2)
pca.fit(a)
eigenvectors = pca.components_
eigenvalues = pca.explained_variance_
eigenvector_p1 = [eigenvectors[0,0], eigenvectors[0,1]]
img_vector = [img, eigenvector_p1]
return img_vector
def angle(v1, v2):
ang1 = np.arctan2(*v1[::-1])
ang2 = np.arctan2(*v2[::-1])
return np.rad2deg((ang1 - ang2) % (2 * np.pi))
def substraction(img1, img2, img1CentroidCoordinate, img2CentroidCoordinate):
img1 = translate(img1, -img1CentroidCoordinate[0]+300, -img1CentroidCoordinate[1]+400)
img2 = translate(img2, -img2CentroidCoordinate[0]+300, -img2CentroidCoordinate[1]+400)
subImg = cv2.subtract(invert_image(img1), invert_image(img2))
return invert_image(subImg)
#Ausführbereich
testNumber = int(input("Wie viele Tests sollen durchgeführt werden? "))
i = 0
check = 0
j = 0
while(i<testNumber):
scene = generateScene()
kernel = np.ones((5,5),np.uint8)
scene_out = cv2.erode(scene,kernel,iterations = 1)
output1 = rotate(scene_out, randint(0, 360))
output1 = translate(output1, randint(-150, 150), randint(-150, 150))
[scene1, vector_angle] = pca(scene_out)
[output1, vector_angle_rotate_1] = pca(output1)
output1_rotate = rotate(output1, angle(vector_angle_rotate_1, vector_angle))
output1_rotate_add180 = rotate(output1, 180 + angle(vector_angle_rotate_1, vector_angle))
sceneCentroidCoordinate = calcCentroid(invert_image(scene_out))
output1_rotate_CentroidCoordinate = calcCentroid(invert_image(output1_rotate))
output1_rotate_add180_CentroidCoordinate = calcCentroid(invert_image(output1_rotate_add180))
sub1 = substraction(output1_rotate, scene1, output1_rotate_CentroidCoordinate, sceneCentroidCoordinate)
sub1_add180 = substraction(output1_rotate_add180, scene1, output1_rotate_add180_CentroidCoordinate, sceneCentroidCoordinate)
count1 = 800*600 - cv2.countNonZero(sub1)
count1add180 = 800*600 - cv2.countNonZero(sub1_add180)
if count1< count1add180:
if count1 == 0:
print("Output1 and Scene1 are identic.")
j += 1
else:
print("Output1 and Scene1 are not identic." + str(count1))
else:
if count1add180 == 0:
print("Output1 and Scene1 are identic.")
j += 1
else:
print("Output1 and Scene1 are not identic." + str(count1add180))
i += 1
print(str(j/testNumber*100) + "% der Testfälle sind erfolgreich")
cv2.waitKey(0)
cv2.destroyAllWindows()