Skip to content
/ PPOT Public
forked from ycyang-xjtu/PPOT

code for "Prototypical Partial Optimal Transport for Universal Domain Adaptation" (AAAI 2023)

Notifications You must be signed in to change notification settings

XJTU-XGU/PPOT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prototypical Partial Optimal Transport for Universal Domain Adaptation

Code for paper "Yucheng Yang, Xiang Gu, Jian Sun, Prototypical Partial Optimal Transport for Universal Domain Adaptation, the 37th AAAI Conference on Artificial Intelligence, 2023".

Prerequisites:

python==3.9
pytorch ==1.12.1
torchvision ==0.13.1
numpy==1.23.1
POT==0.8.2

Datasets:

Download the datasets of
DomainNet
Office-Home
Office-31
VisDA-2017
and modify the path of images in each '.txt' under the folder './data/'.

Training

Office-31:

python train.py --task office31 -s amazon -t dslr --lr 0.0002 --balanced --no-ssl

Office-Home:

python train.py --task officehome -s Art -t Clipart --lr 0.001 --balanced --mlp --aug-plus --cos --multiprocessing-distributed

VisDA-2017:

python train.py --task VisDA2017 -s train -t validation --lr 0.0005 --balanced --mlp --aug-plus --cos --multiprocessing-distributed

Reference code:

https://github.com/facebookresearch/moco

Contact:

If you have any problem, feel free to contect ycyang@stu.xjtu.edu.cn.

About

code for "Prototypical Partial Optimal Transport for Universal Domain Adaptation" (AAAI 2023)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%