-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchoose_thre_area.py
237 lines (200 loc) · 12.5 KB
/
choose_thre_area.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import cv2
import tqdm
import torch
import numpy as np
import seaborn as sns
import pandas as pd
import codecs
import json
import matplotlib.pyplot as plt
plt.switch_backend('agg')
from solver import Solver
from models.model import Model
from datasets.steel_dataset import provider
from utils.set_seed import seed_torch
from utils.cal_dice_iou import compute_dice_class
from config import get_seg_config
class ChooseThresholdMinArea():
''' 选择每一类的像素阈值和最小连通域
'''
def __init__(self, model, model_name, valid_loader, fold, save_path, class_num=4):
''' 模型初始化
Args:
model: 使用的模型
model_name: 当前模型的名称
valid_loader: 验证数据的Dataloader
fold: 当前为多少折
save_path: 保存结果的路径
class_num: 有多少个类别
'''
self.model = model
self.model_name = model_name
self.valid_loader = valid_loader
self.fold = fold
self.save_path = save_path
self.class_num = class_num
self.model.eval()
self.solver = Solver(model)
def choose_threshold_minarea(self):
''' 采用网格法搜索各个类别最优像素阈值和最优最小连通域,并画出各个类别搜索过程中的热力图
Return:
best_thresholds_little: 每一个类别的最优阈值
best_minareas_little: 每一个类别的最优最小连通取余
max_dices_little: 每一个类别的最大dice值
'''
init_thresholds_range, init_minarea_range = np.arange(0.50, 0.71, 0.03), np.arange(768, 2305, 256)
# 阈值列表和最小连通域列表,大小为 Nx4
thresholds_table_big = np.array([init_thresholds_range, init_thresholds_range, \
init_thresholds_range, init_thresholds_range]) # 阈值列表
minareas_table_big = np.array([init_minarea_range, init_minarea_range, \
init_minarea_range, init_minarea_range]) # 最小连通域列表
f, axes = plt.subplots(figsize=(28.8, 18.4), nrows=2, ncols=self.class_num)
cmap = sns.cubehelix_palette(start=1.5, rot=3, gamma=0.8, as_cmap=True)
best_thresholds_big, best_minareas_big, max_dices_big = self.grid_search(thresholds_table_big, minareas_table_big, axes[0,:], cmap)
print('best_thresholds_big:{}, best_minareas_big:{}, max_dices_big:{}'.format(best_thresholds_big, best_minareas_big, max_dices_big))
# 开始细分类
thresholds_table_little, minareas_table_little = list(), list()
for best_threshold_big, best_minarea_big in zip(best_thresholds_big, best_minareas_big):
thresholds_table_little.append(np.arange(best_threshold_big-0.03, best_threshold_big+0.03, 0.015)) # 阈值列表
minareas_table_little.append(np.arange(best_minarea_big-256, best_minarea_big+257, 128)) # 像素阈值列表
thresholds_table_little, minareas_table_little = np.array(thresholds_table_little), np.array(minareas_table_little)
best_thresholds_little, best_minareas_little, max_dices_little = self.grid_search(thresholds_table_little, minareas_table_little, axes[1,:], cmap)
print('best_thresholds_little:{}, best_minareas_little:{}, max_dices_little:{}'.format(best_thresholds_little, best_minareas_little, max_dices_little))
f.savefig(os.path.join(self.save_path, self.model_name + '_fold'+str(self.fold)), bbox_inches='tight')
# plt.show()
plt.close()
return best_thresholds_little, [float(x) for x in best_minareas_little], max_dices_little
def grid_search(self, thresholds_table, minareas_table, axes, cmap):
''' 给定包含各个类别搜索区间的thresholds_table和minareas_table,求的各个类别的最优像素阈值,最优最小连通域,最高dice;
并画出各个类别搜索过程中的热力图
Args:
thresholds_table: 待搜索的阈值范围,维度为[4, N],numpy类型
minareas_table: 待搜索的最小连通域范围,维度为[4, N],numpy类型
axes: 画各个类别搜索热力图时所需要的画柄,尺寸为[class_num]
cmap: 画图时所需要的cmap
return:
best_thresholds: 各个类别的最优像素阈值,尺寸为[class_num]
best_minareas: 各个类别的最优最小连通域,尺寸为[class_num]
max_dices: 各个类别的最大dice,尺寸为[class_num]
'''
dices_table = np.zeros((self.class_num, np.shape(thresholds_table)[1], np.shape(minareas_table)[1]))
tbar = tqdm.tqdm(self.valid_loader)
with torch.no_grad():
for i, samples in enumerate(tbar):
if len(samples) == 0:
continue
images, masks = samples[0], samples[1]
# 完成网络的前向传播
masks_predict_allclasses = self.solver.forward(images)
dices_table += self.grid_search_batch(thresholds_table, minareas_table, masks_predict_allclasses, masks)
dices_table = dices_table/len(tbar)
best_thresholds, best_minareas, max_dices = list(), list(), list()
# 处理每一类的预测结果
for each_class, dices_oneclass_table in enumerate(dices_table):
max_dice = np.max(dices_oneclass_table)
max_location = np.unravel_index(np.argmax(dices_oneclass_table, axis=None),
dices_oneclass_table.shape)
best_thresholds.append(thresholds_table[each_class, max_location[0]])
best_minareas.append(minareas_table[each_class, max_location[1]])
max_dices.append(max_dice)
data = pd.DataFrame(data=dices_oneclass_table, index=np.around(thresholds_table[each_class,:], 3), columns=minareas_table[each_class,:])
sns.heatmap(data, linewidths=0.05, ax=axes[each_class], vmax=np.max(dices_oneclass_table), vmin=np.min(dices_oneclass_table), cmap=cmap,
annot=True, fmt='.4f')
axes[each_class].set_title('search result')
return best_thresholds, best_minareas, max_dices
def grid_search_batch(self, thresholds_table, minareas_table, masks_predict_allclasses, masks_allclasses):
'''给定thresholds、minareas矩阵、一个batch的预测结果和真实标签,遍历每个类的每一个组合得到对应的dice值
Args:
thresholds_table: 待搜索的阈值范围,维度为[4, N],numpy类型
minareas_table: 待搜索的最小连通域范围,维度为[4, N],numpy类型
masks_predict_allclasses: 所有类别的某个batch的预测结果且未经过sigmoid,维度为[batch_size, class_num, height, width]
masks_allclasses: 所有类别的某个batch的真实类标,维度为[batch_size, class_num, height, width]
Return:
dices_table: 各个类别在其各自的所有搜索组合中所得到的dice值,维度为[4, M, N]
'''
# 得到每一个类别的搜索阈值区间和最小连通域搜索区间
dices_table = list()
for each_class, (thresholds_range, minareas_range) in enumerate(zip(thresholds_table, minareas_table)):
# 得到每一类的预测结果和真实类标
masks_predict_oneclass = masks_predict_allclasses[:, each_class, ...]
masks_oneclasses = masks_allclasses[:, each_class, ...]
dices_range = self.post_process(thresholds_range, minareas_range, masks_predict_oneclass, masks_oneclasses)
dices_table.append(dices_range)
# 得到的大小为 4 x len(thresholds_range) x len(minareas_range)
return np.array(dices_table)
def post_process(self, thresholds_range, minareas_range, masks_predict_oneclass, masks_oneclasses):
'''给定某个类别的某个batch的数据,遍历所有搜索组合,得到每个组合的dice值
Args:
thresholds_range: 具体某个类别的像素阈值搜索区间,尺寸为[M]
minareas_range: 具体某个类别的最小连通域搜索区间,尺寸为[N]
masks_predict_oneclass: 预测出的某个类别的该batch的tensor向量且未经过sigmoid,维度为[batch_size, height, width]
masks_oneclasses: 某个类别的该batch的真实类标,维度为[batch_size, height, width]
Return:
dices_range: 某个类别的该batch的所有搜索组合得到dice矩阵,维度为[M, N]
'''
# 注意,损失函数中包含sigmoid函数,一般情况下需要手动经过sigmoid函数
masks_predict_oneclass = torch.sigmoid(masks_predict_oneclass).detach().cpu().numpy()
dices_range = np.zeros((len(thresholds_range), len(minareas_range)))
# 遍历每一个像素阈值和最小连通域
for index_threshold, threshold in enumerate(thresholds_range):
for index_minarea, minarea in enumerate(minareas_range):
batch_preds = list()
# 遍历每一张图片
for pred in masks_predict_oneclass:
mask = cv2.threshold(pred, threshold, 1, cv2.THRESH_BINARY)[1]
# 将背景标记为 0,其他的块从 1 开始的正整数标记
num_component, component = cv2.connectedComponents(mask.astype(np.uint8))
predictions = np.zeros((256, 1600), np.float32)
num = 0
for c in range(1, num_component):
p = (component == c)
if p.sum() > minarea:
predictions[p] = 1
num += 1
batch_preds.append(predictions)
dice = compute_dice_class(torch.from_numpy(np.array(batch_preds)), masks_oneclasses)
dices_range[index_threshold, index_minarea] = dice
return dices_range
def get_model(model_name, load_path):
''' 加载网络模型并加载对应的权重
Args:
model_name: 当前模型的名称
load_path: 当前模型的权重路径
Return:
model: 加载出来的模型
'''
model = Model(model_name).create_model()
Solver(model).load_checkpoint(load_path)
return model
if __name__ == "__main__":
config = get_seg_config()
mean=(0.485, 0.456, 0.406)
std=(0.229, 0.224, 0.225)
mask_only = True
dataloaders = provider(config.dataset_root, os.path.join(config.dataset_root, 'train.csv'), mean, std, config.batch_size, config.num_workers, config.n_splits, mask_only)
results = {}
# 存放权重的路径
model_path = os.path.join(config.save_path, config.model_name)
best_thresholds_sum, best_minareas_sum, max_dices_sum = [0 for x in range(len(dataloaders))], \
[0 for x in range(len(dataloaders))], [0 for x in range(len(dataloaders))]
for fold_index, [train_loader, valid_loader] in enumerate(dataloaders):
if fold_index != 1:
continue
# 存放权重的路径+文件名
load_path = os.path.join(model_path, '%s_fold%d_best.pth' % (config.model_name, fold_index))
# 加载模型
model = get_model(config.model_name, load_path)
mychoose_threshold_minarea = ChooseThresholdMinArea(model, config.model_name, valid_loader, fold_index, model_path)
best_thresholds, best_minareas, max_dices = mychoose_threshold_minarea.choose_threshold_minarea()
result = {'best_thresholds': best_thresholds, 'best_minareas': best_minareas, 'max_dices': max_dices}
results[str(fold_index)] = result
best_thresholds_sum = [x+y for x,y in zip(best_thresholds_sum, best_thresholds)]
best_minareas_sum = [x+y for x,y in zip(best_minareas_sum, best_minareas)]
max_dices_sum = [x+y for x,y in zip(max_dices_sum, max_dices)]
best_thresholds_average, best_minareas_average, max_dices_average = [x/len(dataloaders) for x in best_thresholds_sum], \
[x/len(dataloaders) for x in best_minareas_sum], [x/len(dataloaders) for x in max_dices_sum]
results['mean'] = {'best_thresholds': best_thresholds_average, 'best_minareas': best_minareas_average, 'max_dices': max_dices_average}
with codecs.open(model_path + '/%s_result.json' % (config.model_name), 'w', "utf-8") as json_file:
json.dump(results, json_file, ensure_ascii=False)
print('save the result')