-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclassify_segment.py
361 lines (309 loc) · 17.7 KB
/
classify_segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import json
import os
import cv2
import torch
import numpy as np
from solver import Solver
from models.model import Model, ClassifyResNet
def post_process(probability, threshold, min_size):
'''Post processing of each predicted mask, components with lesser number of pixels
than `min_size` are ignored'''
mask = cv2.threshold(probability, threshold, 1, cv2.THRESH_BINARY)[1]
num_component, component = cv2.connectedComponents(mask.astype(np.uint8))
predictions = np.zeros((256, 1600), np.float32)
num = 0
for c in range(1, num_component):
p = (component == c)
if p.sum() > min_size:
predictions[p] = 1
num += 1
return predictions, num
def get_thresholds_minareas(json_path, fold=None):
''' 得到各个类别的特定fold的最优像素阈值和最优最小连通域或者所有fold的平均最优像素阈值和平均最优最小连通域
:param json_path: 要加载的json路径
:param fold: 要加载哪一折的结果,当fold为None的时候,返回的是平均值
:return: thresholds: 当fold为非None的时候,返回特定fold各个类别的最优像素阈值,类型为list;
当fold为None的时候,返回所有fold各个类别的最优像素阈值的平均值,类型为list
:return: minareas: 当fold为非None的时候,返回特定fold各个类别的最优最小连通域,类型为list
当fold为None的时候,返回所有fold各个类别的最优最小连通域的平均值,类型为list
'''
with open(json_path, encoding='utf-8') as json_file:
result = json.load(json_file)
if fold != None:
thresholds, minareas = result[str(fold)]['best_thresholds'], result[str(fold)]['best_minareas']
else:
thresholds, minareas = result['mean']['best_thresholds'], result['mean']['best_minareas']
return thresholds, minareas
class Get_Classify_Results():
def __init__(self, model_name, fold, model_path, class_num=4, tta_flag=False):
''' 处理当前fold一个batch的数据分类结果
:param model_name: 当前的模型名称
:param fold: 当前的折数
:param model_path: 存放所有模型的路径
:param class_num: 类别总数
'''
self.model_name = model_name
self.fold = fold
self.model_path = model_path
self.class_num = class_num
self.tta_flag = tta_flag
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载模型及其权重
self.classify_model = ClassifyResNet(model_name, encoder_weights=None)
if torch.cuda.is_available():
self.classify_model = torch.nn.DataParallel(self.classify_model)
self.classify_model.to(self.device)
self.classify_model_path = os.path.join(self.model_path, '%s_classify_fold%d_best.pth' % (self.model_name, self.fold))
self.solver = Solver(self.classify_model)
self.classify_model = self.solver.load_checkpoint(self.classify_model_path)
self.classify_model.eval()
def get_classify_results(self, images, thrshold=0.5):
''' 处理当前fold一个batch的数据分类结果
:param images: 一个batch的数据,维度为[batch, channels, height, width]
:param thrshold: 分类模型的阈值
:return: predict_classes: 一个batch的数据经过分类模型后的结果,维度为[batch, class_num]
'''
if self.tta_flag:
predict_classes = self.solver.tta(images, seg=False)
else:
predict_classes = self.solver.forward(images)
predict_classes = predict_classes > thrshold
return predict_classes
class Get_Segment_Results():
def __init__(self, model_name, fold, model_path, class_num=4, tta_flag=False):
''' 处理当前fold一个batch的数据分割结果
:param model_name: 当前的模型名称
:param fold: 当前的折数
:param model_path: 存放所有模型的路径
:param class_num: 类别总数
'''
self.model_name = model_name
self.fold = fold
self.model_path = model_path
self.class_num = class_num
self.tta_flag = tta_flag
# 加载模型及其权重
self.segment_model = Model(self.model_name, encoder_weights=None).create_model()
self.segment_model_path = os.path.join(self.model_path, '%s_fold%d_best.pth' % (self.model_name, self.fold))
self.solver = Solver(self.segment_model)
self.segment_model = self.solver.load_checkpoint(self.segment_model_path)
self.segment_model.eval()
# 加载存放像素阈值和连通域的json文件
self.json_path = os.path.join(self.model_path, '%s_result.json' % self.model_name)
self.best_thresholds, self.best_minareas = get_thresholds_minareas(self.json_path, self.fold)
def get_segment_results(self, images, process_flag=True):
''' 处理当前fold一个batch的数据分割结果
:param images: 一个batch的数据,维度为[batch, channels, height, width]
:param process_flag: 是否经过像素阈值和最小连通域
:return: predict_masks: 一个batch的数据经过分割网络后得到的预测结果,维度为[batch, class_num, height, width]。
当 process_flag=True 的时候,返回的结果经过了阈值以及最小连通域,得到的 predict_masks 为二值化的
当 process_flag=False 的时候,返回的结果未经过阈值以及最小连通域,得到的 predict_masks 为非二值化的,值处于 [0, 1] 之间
'''
# 得到的维度为[batch, class_num, height, width]
if self.tta_flag:
predict_masks = self.solver.tta(images)
else:
predict_masks = self.solver.forward(images)
# 是否需要经过阈值以及像素阈值,默认经过
if process_flag:
for index, predict_masks_classes in enumerate(predict_masks):
for each_class, pred in enumerate(predict_masks_classes):
pred_binary, _ = post_process(pred.detach().cpu().numpy(), self.best_thresholds[each_class], self.best_minareas[each_class])
predict_masks[index, each_class] = torch.from_numpy(pred_binary)
return predict_masks
class Classify_Segment_Fold():
def __init__(self, classify_fold, seg_fold, model_path, class_num=4, tta_flag=False, kaggle=0):
''' 处理当前fold一个batch的分割结果和分类结果
:param model_name: 当前的模型名称
:param classify_fold: 字典,分类模型 {'model_name': fold_index}
:param seg_fold: 字典,分割模型 {'model_name': fold_index}
:param model_path: 存放所有模型的路径
:param class_num: 类别总数
'''
self.classify_fold = classify_fold
self.seg_fold = seg_fold
self.model_path = model_path
self.class_num = class_num
for (model_name, fold) in self.classify_fold.items():
if kaggle == 0:
pth_path = os.path.join(self.model_path, model_name)
else:
pth_path = self.model_path
self.classify_model = Get_Classify_Results(model_name, fold, pth_path, self.class_num, tta_flag=tta_flag)
for (model_name, fold) in self.classify_fold.items():
if kaggle == 0:
pth_path = os.path.join(self.model_path, model_name)
else:
pth_path = self.model_path
self.segment_model = Get_Segment_Results(model_name, fold, pth_path, self.class_num, tta_flag=tta_flag)
def classify_segment(self, images):
''' 处理当前fold一个batch的分割结果和分类结果
:param images: 一个batch的数据,维度为[batch, channels, height, width]
:return: predict_masks,一个batch的数据,经过分割模型和分类模型处理后的结果
'''
# 得到一个batch数据分类模型的结果,维度为[batch, class_num]
predict_classes = self.classify_model.get_classify_results(images)
# 得到一个batch数据分割模型的结果,维度为[batch, class_num, height, width]
predict_masks = self.segment_model.get_segment_results(images)
for index, predicts in enumerate(predict_classes):
for each_class, pred in enumerate(predicts):
if pred == 0:
predict_masks[index, each_class, ...] = 0
return predict_masks
class Classify_Segment_Folds():
def __init__(self, classify_folds, segment_folds, model_path, class_num=4, tta_flag=False, kaggle=0):
''' 使用投票法处理所有fold一个batch的分割结果和分类结果
:param classify_folds: 字典,{'model_name': fold_index}
:param segment_folds: 字典,{'model_name': fold_index}
:param model_path: 存放所有模型的路径
:param class_num: 类别总数
:param kaggle: 是否在kaggle的kernel运行
'''
self.classify_folds = classify_folds
self.segment_folds = segment_folds
self.model_path = model_path
self.class_num = class_num
self.tta_flag = tta_flag
self.kaggle = kaggle
self.classify_models, self.segment_models = list(), list()
self.get_classify_segment_models()
def get_classify_segment_models(self):
''' 加载所有折的分割模型和分类模型
'''
for (model_name, fold) in self.classify_folds.items():
if self.kaggle == 0:
pth_path = os.path.join(self.model_path, model_name)
else:
pth_path = self.model_path
self.classify_models.append(Get_Classify_Results(model_name, fold, pth_path, self.class_num, tta_flag=self.tta_flag))
for (model_name, fold) in self.segment_folds.items():
if self.kaggle == 0:
pth_path = os.path.join(self.model_path, model_name)
else:
pth_path = self.model_path
self.segment_models.append(Get_Segment_Results(model_name, fold, pth_path, self.class_num, tta_flag=self.tta_flag))
def classify_segment_folds(self, images):
''' 使用投票法处理所有fold一个batch的分割结果和分类结果
:param images: 一个batch的数据,维度为[batch, channels, height, width]
:return: results,使用投票法处理所有fold一个batch的分割结果和分类结果,维度为[batch, class_num, height, width]
'''
results = torch.zeros(images.shape[0], self.class_num, images.shape[2], images.shape[3])
for classify_model, segment_model in zip(self.classify_models, self.segment_models):
# 得到一个batch数据分类模型的结果,维度为[batch, class_num]
predict_classes = classify_model.get_classify_results(images)
# 得到一个batch数据分割模型的结果,维度为[batch, class_num, height, width]
predict_masks = segment_model.get_segment_results(images)
for index, predicts in enumerate(predict_classes):
for each_class, pred in enumerate(predicts):
if pred == 0:
predict_masks[index, each_class, ...] = 0
results += predict_masks.detach().cpu()
vote_model_num = len(self.segment_folds)
vote_ticket = round(vote_model_num / 2.0)
results = results > vote_ticket
return results
class Classify_Segment_Folds_Split():
def __init__(self, classify_folds, segment_folds, model_path, class_num=4, tta_flag=False, kaggle=0):
''' 首先得到分类模型的集成结果,再得到分割模型的集成结果,最后将两个结果进行融合
:param classify_folds: 字典,{'model_name': fold_index}
:param segment_folds: 字典,{'model_name': fold_index}
:param model_path: 存放所有模型的路径, checkpoints/
:param class_num: 类别总数
:param kaggle: 是否在kaggle的kernel运行
'''
self.classify_folds = classify_folds
self.segment_folds = segment_folds
self.model_path = model_path
self.class_num = class_num
self.tta_flag = tta_flag
self.kaggle = kaggle
self.classify_models, self.segment_models = list(), list()
self.get_classify_segment_models()
def get_classify_segment_models(self):
''' 加载所有折的分割模型和分类模型
'''
for (model_name, fold) in self.classify_folds.items():
if self.kaggle == 0:
pth_path = os.path.join(self.model_path, model_name)
else:
pth_path = self.model_path
self.classify_models.append(Get_Classify_Results(model_name, fold, pth_path, self.class_num, tta_flag=self.tta_flag))
for (model_name, fold) in self.segment_folds.items():
if self.kaggle == 0:
pth_path = os.path.join(self.model_path, model_name)
else:
pth_path = self.model_path
self.segment_models.append(Get_Segment_Results(model_name, fold, pth_path, self.class_num, tta_flag=self.tta_flag))
def classify_segment_folds(self, images, average_strategy=False):
''' 使用投票法或者平均法处理所有fold一个batch的分割结果和分类结果
:param images: 一个batch的数据,维度为[batch, channels, height, width]
:param average_strategy: 当为True的时候,使用平均策略;当为False的时候,使用投票策略
:return: results,使用投票法或者平均法处理所有fold一个batch的分割结果和分类结果,维度为[batch, class_num, height, width]
'''
classify_results = torch.zeros(images.shape[0], self.class_num)
segment_results = torch.zeros(images.shape[0], self.class_num, images.shape[2], images.shape[3])
# 得到分类结果
for classify_index, classify_model in enumerate(self.classify_models):
classify_result_fold = classify_model.get_classify_results(images)
classify_results += classify_result_fold.detach().cpu().squeeze().float()
classify_vote_model_num = len(self.classify_folds)
classify_vote_ticket = round(classify_vote_model_num / 2.0)
classify_results = classify_results > classify_vote_ticket
# 得到分割结果
# 如果采用平均策略的话
if average_strategy:
for segment_index, segment_model in enumerate(self.segment_models):
segment_result_fold = segment_model.get_segment_results(images, process_flag=False)
segment_results += segment_result_fold.detach().cpu()
average_thresholds, average_minareas = get_thresholds_minareas(os.path.join(self.model_path, 'result.json'))
segment_results = segment_results/len(self.segment_folds)
for index, predict_masks_classes in enumerate(segment_results):
for each_class, pred in enumerate(predict_masks_classes):
pred_binary, _ = post_process(pred.detach().cpu().numpy(), average_thresholds[each_class], average_minareas[each_class])
segment_results[index, each_class] = torch.from_numpy(pred_binary)
# 如果采用投票策略的话
else:
for segment_index, segment_model in enumerate(self.segment_models):
segment_result_fold = segment_model.get_segment_results(images)
segment_results += segment_result_fold.detach().cpu()
segment_vote_model_num = len(self.segment_folds)
segment_vote_ticket = round(segment_vote_model_num / 2.0)
segment_results = segment_results > segment_vote_ticket
# 将分类结果和分割结果进行融合
for batch_index, classify_result in enumerate(classify_results):
segment_results[batch_index, ~classify_result, ...] = 0
return segment_results
class Segment_Folds():
def __init__(self, model_name, n_splits, model_path, class_num=4, tta_flag=False):
''' 使用投票法处理所有fold一个batch的分割结果
:param model_name: 当前的模型名称
:param n_splits: 总共有多少折,为list列表
:param model_path: 存放所有模型的路径
:param class_num: 类别总数
'''
self.model_name = model_name
self.n_splits = n_splits
self.model_path = model_path
self.class_num = class_num
self.tta_flag = tta_flag
self.segment_models = list()
self.get_segment_models()
def get_segment_models(self):
''' 加载所有折的分割模型
'''
for fold in self.n_splits:
self.segment_models.append(Get_Segment_Results(self.model_name, fold, self.model_path, self.class_num, tta_flag=self.tta_flag))
def segment_folds(self, images):
''' 使用投票法处理所有fold一个batch的分割结果
:param images: 一个batch的数据,维度为[batch, channels, height, width]
:return: results,使用投票法处理所有fold一个batch的分割结果和分类结果,维度为[batch, class_num, height, width]
'''
results = torch.zeros(images.shape[0], self.class_num, images.shape[2], images.shape[3])
for segment_model in self.segment_models:
# 得到一个batch数据分割模型的结果,维度为[batch, class_num, height, width]
predict_masks = segment_model.get_segment_results(images)
results += predict_masks.detach().cpu()
vote_model_num = len(self.n_splits)
vote_ticket = round(vote_model_num / 2.0)
results = results > vote_ticket
return results