forked from MinPlot/MinPlot_Program
-
Notifications
You must be signed in to change notification settings - Fork 0
/
amphibole.m
1069 lines (902 loc) · 42.2 KB
/
amphibole.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%Calculates amphibole formula following Hawthorne et al. (2012) and
%Leake et al., (1997)
function [Strct_Frm, APFU, APFU_FeT, Fe3_limits, Fe3_class, APFU_SiT, APFU_AfullT, APFU_NaAT, APFU_Fe2O3T, APFU_SiAlT, APFU_KAT, APFU_CaNaBT]=amphibole(data,headers,wantstrctfrm,wantTiOH,wantplot,wantferric)
[m,n]=size(data); %finds the x and y size of the input data matrix
%finds the column position oxide headers in any order to assign data to the correct array
%positions
I(1,1)=find(strcmp(headers,'SiO2'));
%Makes TiO2 optional
if strcmp(headers,'TiO2')==zeros(1,length(headers))
I(1,2)=0;
else
I(1,2)=find(strcmp(headers,'TiO2'));
end
I(1,3)=find(strcmp(headers,'Al2O3'));
%Makes Cr2O3 optional
if strcmp(headers,'Cr2O3')==zeros(1,length(headers))
I(1,4)=0;
else
I(1,4)=find(strcmp(headers,'Cr2O3'));
end
I(1,5)=find(strcmp(headers,'FeO'));
I(1,6)=find(strcmp(headers,'MnO'));
I(1,7)=find(strcmp(headers,'MgO'));
I(1,8)=find(strcmp(headers,'CaO'));
I(1,9)=find(strcmp(headers,'Na2O'));
I(1,10)=find(strcmp(headers,'K2O'));
%Makes F optional
if strcmp(headers,'F')==zeros(1,length(headers))
I(1,11)=0;
else
I(1,11)=find(strcmp(headers,'F'));
end
%Makes Cl optional
if strcmp(headers,'Cl')==zeros(1,length(headers))
I(1,12)=0;
else
I(1,12)=find(strcmp(headers,'Cl'));
end
%% makes a new array, D, where the oxides are in the correct order and
%filling in zeros where optional oxides are not included
D(:,1)=data(:,I(1,1)); %SiO2
%adds TiO2 if it is included in the analysis
if I(1,2)==0
D(:,2)=zeros(m,1);
else
D(:,2)=data(:,I(1,2));
end
D(:,3)=data(:,I(1,3)); %Al2O3
%adds Cr2O3 if it is included in the analysis
if I(1,4)==0
D(:,4)=zeros(m,1);
else
D(:,4)=data(:,I(1,4));
end
D(:,5)=zeros(m,1); %Fe2O3, all zeros (place holder)
D(:,6)=data(:,I(1,5)); %FeO
D(:,7)=data(:,I(1,6)); %MnO
D(:,8)=data(:,I(1,7)); %MgO
D(:,9)=data(:,I(1,8)); %CaO
D(:,10)=data(:,I(1,9)); %Na2O
D(:,11)=data(:,I(1,10)); %K2O
D(:,12)=zeros(m,1); %H2O, all zeros (place holder)
%adds F if it is included in the analysis
if I(1,11)==0
D(:,13)=zeros(m,1);
else
D(:,13)=data(:,I(1,11));
end
%adds Cl if it is included in the analysis
if I(1,12)==0
D(:,14)=zeros(m,1);
else
D(:,14)=data(:,I(1,12));
end
% Molecular weights
SiO2=60.083;
TiO2=79.865;
Al2O3=101.961;
Cr2O3=151.989;
Fe2O3=159.6874;
Y2O3=225.809;
NiO=74.692;
ZnO=81.381;
FeO=71.8442;
MnO=70.937;
MgO=40.304;
CaO=56.0774;
Na2O=61.979;
K2O=94.195;
BaO=153.329;
F=18.998;
Cl=35.45;
H2O=18.01528;
W=[SiO2,TiO2,Al2O3,Cr2O3,Fe2O3,FeO,MnO,MgO,CaO,Na2O,K2O,H2O,F,Cl];
%% Initial Fe3+ estimation
%calculate the initial APFU of cations and anions
[O2_Ti,APFU_I,MC]=Amph_O2Ti(D,W,wantTiOH); %calls the initial amphibole APFU calculation
%Lower Limits on Fe3+:
%Atoms per formula unit (APFU) assuming that all Fe is FeO
APFU_Fe=Amph_Fe(D,W,O2_Ti);
if strcmp(wantferric, 'y')
%APFU assuming 8 Si cations
APFU_Si=Amph_Si(APFU_Fe,O2_Ti);
%APFU assuming 16 cations (no vacancies on A)
APFU_Afull=Amph_Afull(APFU_Fe,O2_Ti);
%APFU assuming Na in A site only
APFU_NaA=Amph_NaA(APFU_Fe,O2_Ti);
APFU_low=zeros(m,11);
% Fe3+ minimum estimate: highest of 3 normalization factors
for c=1:m
%if the 3 minima criteria have lower normalization factors than the
%four maximum criteria, then Fe3+ cannot be estimated and FeTotal=Fe2+
if find(APFU_Fe(c,15:17)>APFU_Fe(c,12:14))
APFU_low(c,:)=APFU_Fe(c,1:1:11);
low_check{c,1}='Fe3+ cannot be estimated';
else %otherwise,a Fe3+ lower estimate can be made
%if the normalization factors are all greater than 1, then all Fe is assumed to be FeO
if (APFU_Fe(c,12) > 1) && (APFU_Fe(c,13) > 1) && (APFU_Fe(c,14) > 1)
APFU_low(c,:)=APFU_Fe(c,1:1:11);
low_check{c,1}={'All Fe is FeO'};
else
%If (8/Si) < (16/sum(all cations)) & < (15/sum(cations Si to Ca))
%, then the Si normalized formula is correct
if (APFU_Fe(c,12) < APFU_Fe(c,13)) && (APFU_Fe(c,12) < APFU_Fe(c,14))
APFU_low(c,:)=APFU_Si(c,1:1:11);
low_check{c,1}={'Criterion 1-1: 8 Si cations on T'};
else %otherwise, consider the reamining two options
%If 16/sum(all cations) < (8/Si) & < (15/sum(cations Si to Ca))
%, then the formula normalized to 16 cations is correct
if (APFU_Fe(c,13) < APFU_Fe(c,12)) && (APFU_Fe(c,13) < APFU_Fe(c,14))
APFU_low(c,:)=APFU_Afull(c,1:1:11);
low_check{c,1}={'Criterion 1-2: 16 total cations (no vac. on A)'};
else
%otherwise, 15/sum(cations Si to Ca) is the only remaining
%option for a normalization factor
APFU_low(c,:)=APFU_NaA(c,1:1:11);
low_check{c,1}={'Criterion 1-3: Na on A site only'};
end
end
end
end
end
% Upper Limits on Fe3+
%APFU assuming all Fe is Fe2O3
APFU_Fe2O3=Amph_Fe2O3(D,W,O2_Ti);
O2_Nfact=APFU_Fe2O3(:,19)./APFU_Fe(:,19); %Normalization factor for all Fe as Fe2O3 relative to all Fe as FeO
%APFU assuming Al + Si in T site only
APFU_SiAlT=Amph_SiAlT(APFU_Fe,O2_Ti);
%APFU assuming K only on the A site
APFU_KA=Amph_KA(APFU_Fe,O2_Ti);
%APFU assuming fully occupied T & B sites
APFU_CaNaB=Amph_CaNaB(APFU_Fe,O2_Ti);
%APFU assuming tetrahedral sites completely filled by 3+ and 4+ cations
APFU_10Fe3=Amph_10Fe3(APFU_Fe,O2_Ti);
%Fe3+ maximum estimate: highest of 4 normalization factors
APFU_hi=zeros(m,11);
for c=1:m
%if the 3 minima criteria have lower normalization factors than the
%four maximum criteria, then Fe3+ cannot be estimated and FeTotal=Fe2+
if find(APFU_Fe(c,15:17)>APFU_Fe(c,12:14))
APFU_hi(c,:)=APFU_Fe(c,1:1:11);
hi_check{c,1}={'Fe3+ cannot be estimated'};
else
%If the all Fe3+ normalization factor is grater than the other
if (O2_Nfact(c,1) > APFU_Fe(c,15)) && (O2_Nfact(c,1) > APFU_Fe(c,16)) && (O2_Nfact(c,1) > APFU_Fe(c,17)) && (O2_Nfact(c,1) > APFU_Fe(c,18))
APFU_hi(c,:)=APFU_Fe2O3(c,1:1:11);
hi_check{c,1}={'Criterion 2-5: All Fe is Fe2O3'};
else
if (APFU_Fe(c,15) > O2_Nfact(c,1)) && (APFU_Fe(c,15) > APFU_Fe(c,16)) && (APFU_Fe(c,15) > APFU_Fe(c,17)) && (APFU_Fe(c,15) > APFU_Fe(c,18))
APFU_hi(c,:)=APFU_SiAlT(c,1:1:11);
hi_check{c,1}={'Criterion 2-1: Al + Si normalized to 8 in T site'};
else
if (APFU_Fe(c,16) > O2_Nfact(c,1)) && (APFU_Fe(c,16) > APFU_Fe(c,15)) && (APFU_Fe(c,16) > APFU_Fe(c,17)) && (APFU_Fe(c,16) > APFU_Fe(c,18))
APFU_hi(c,:)=APFU_KA(c,1:1:11);
hi_check{c,1}={'Criterion 2-2: K only on the A site, fully occupied T, B, & C sites'};
else
if (APFU_Fe(c,17) > O2_Nfact(c,1)) && (APFU_Fe(c,17) > APFU_Fe(c,15)) && (APFU_Fe(c,17) > APFU_Fe(c,16)) && (APFU_Fe(c,17) > APFU_Fe(c,18))
APFU_hi(c,:)=APFU_CaNaB(c,1:1:11);
hi_check{c,1}={'Criterion 2-3: Fully occupied T & B sites'};
else
APFU_hi(c,:)=APFU_10Fe3(c,1:1:11);
hi_check{c,1}={'Criterion 2-4: tetrahedral sites completely filled by 3+ and 4+ cations'};
end
end
end
end
end
end
% calculate the formula with Fe3+/Fetotal determination from high and low
% limits
APFU=(APFU_hi+APFU_low)./2;
%Adds OH, scales for subsequent itterations
for c=1:m
if APFU_I(c,12) > 0
APFU(c,12) = APFU_I(c,12); %OH from the normalized moles cations
else
APFU(c,12) = MC(c,12).*(MC(c,1)./APFU(c,1)); %OH is scaled based on the change in Si content
end
end
%Adds F
for c=1:m
if APFU_I(c,13) > 0
APFU(c,13) = APFU_I(c,13); %F from the normalized moles cations
else
APFU(c,13) = MC(c,13).*(MC(c,1)./APFU(c,1)); %F is scaled based on the change in Si content
end
end
%Adds Cl
for c=1:m
if APFU_I(c,14) > 0
APFU(c,14) = APFU_I(c,14); %Cl from the normalized moles cations
else
APFU(c,14) = MC(c,14).*(MC(c,1)./APFU(c,1)); %Cl is scaled based on the change in Si content
end
end
for c=1:m
if (APFU(c,12)+APFU(c,13)+APFU(c,14)) > 2 %if (OH_initial + F + Cl) > 2
if (APFU(c,13)+APFU(c,14)) < 2 % if (F + Cl) < 2
OH_1(c,1)=2-(APFU(c,13)+APFU(c,14)); %initial OH guess is 2-(F+Cl)
else
OH_1(c,1)=0; %W site is filled by Cl and F
end
else
if (APFU(c,12)+APFU(c,13)+APFU(c,14)) < 2 %if (OH_initial + F + Cl) < 2
if (2-APFU(c,13)-APFU(c,14)) > 0 %if (2-F-Cl) < 2
OH_1(c,1)=(2-APFU(c,13)-APFU(c,14)); % OH = 2-F-Cl
else
OH_1(c,1)=0; %W site is filled by Cl and F
end
else
OH_1(c,1)=APFU(c,12);
end
end
end
%OH estimation, Step 2: Adjustment for OH=2-2Ti
%some Ti goes into the T site instead of the M site
for c=1:m
%if Ti > (8-(Si+Al)) & (8-(Si+Al))>0
if APFU(c,2)>(8-(APFU(c,1)+APFU(c,3))) && (8-(APFU(c,1)+APFU(c,3))) > 0
Ticorr(c,1)=APFU(c,2)-(8-(APFU(c,1)+APFU(c,3))); %Ti in M = Titotal - Ti in T
else
Ticorr(c,1)=APFU(c,2); %otherwise all Ti is in M
end
end
% Determine appropriate OH correction
for c=1:m
if strcmp(wantTiOH, 'y')
if (APFU(c,12) + APFU(c,13) + APFU(c,14)) > 2 %If (OH + F + Cl) > 2
if ((2.*APFU(c,12))./((APFU(c,12)+ APFU(c,13) + APFU(c,14))-2.*APFU(c,2)))>0 %if ((2*OH)/((OH+F+Cl)-2*Ti)) >0
APFU(c,12)=((2.*APFU(c,12))./((APFU(c,12)+ APFU(c,13) + APFU(c,14))-2.*APFU(c,2)));
else
APFU(c,12)=0; %W is filled by F, Cl, and O
end
else
if (APFU(c,12) + APFU(c,13) + APFU(c,14)) < 2 %If (OH + F + Cl) < 2
if ((2-APFU(c,13)-APFU(c,14))-2.*Ticorr(c,1))>0 %if 2-F-Cl-2*Ti > 0
APFU(c,12)=((2-APFU(c,13)-APFU(c,14))-2.*Ticorr(c,1)); %OH=(2-F-Cl-2*Ti)
else
APFU(c,12)=0; %W is filled by F, Cl, and O
end
else
APFU(c,12)=APFU(c,12); %OH content is not adjusted for Ti
end
end
else
APFU(c,12)=OH_1(c,1);
end
end
%Moles of anions
APFU_an(:,1)=APFU(:,1).*2; %SiO2
APFU_an(:,2)=APFU(:,2).*2; %TiO2
APFU_an(:,3)=APFU(:,3).*1.5; %Al2O3
APFU_an(:,4)=APFU(:,4).*1.5; %Cr2O3
APFU_an(:,5)=APFU(:,5).*1.5; %Fe2O3
APFU_an(:,6)=APFU(:,6); %FeO
APFU_an(:,7)=APFU(:,7); %MnO
APFU_an(:,8)=APFU(:,8); %MgO
APFU_an(:,9)=APFU(:,9); %CaO
APFU_an(:,10)=APFU(:,10).*0.5; %Na2O
APFU_an(:,11)=APFU(:,11).*0.5; %K2O
APFU_an(:,12)=APFU(:,12).*0.5; %H2O
%for F
for c=1:m
if (APFU(c,13)+APFU(c,14))>2 %F + Cl cannot > 2
APFU_an(c,13)=2.*(APFU(c,13)./(APFU(c,13)+APFU(c,14))); %scales F
else
APFU_an(c,13)=APFU(c,13); %Does not scale F
end
end
%for Cl
for c=1:m
if (APFU(c,13)+APFU(c,14))>2 %F + Cl cannot > 2
APFU_an(c,14)=2.*(APFU(c,14)./(APFU(c,13)+APFU(c,14))); %scales Cl
else
APFU_an(c,14)=APFU(c,14); %Does not scale Cl
end
end
%the anion sum may be > 24
anion_sum=sum(APFU_an(:,1:12),2)+0.5*APFU_an(:,13)+0.5*APFU_an(:,14);
anion_norm=24./anion_sum;
APFU_n=APFU.*anion_norm; %cations normalized to 24 anions
APFU_ann=APFU_an.*anion_norm; %anions normalized to 24 anions
Fe3_ratio(:,1)=APFU(:,5)./(APFU(:,5)+APFU(:,6));
molar_mass=APFU_n(:,1).*SiO2+APFU_n(:,2).*TiO2+(APFU_n(:,3)./2).*Al2O3+(APFU_n(:,4)./2).*Cr2O3+(APFU_n(:,5)./2).*Fe2O3+APFU_n(:,6).*FeO+APFU_n(:,7).*MnO+APFU_n(:,8).*MgO+APFU_n(:,9).*CaO+(APFU_n(:,10)./2).*Na2O+(APFU_n(:,11)./2).*K2O+(APFU_n(:,12)./2).*H2O+APFU_ann(:,13).*F+APFU_ann(:,14).*Cl-APFU_ann(:,13).*15.9994.*0.5-APFU_ann(:,14).*15.9994.*0.5;
%new wt% of oxides
D2=D;
D2(:,5)=Fe3_ratio(:,1).*(D(:,5).*(2*FeO/Fe2O3)+D(:,6))./(2*FeO/Fe2O3);
D2(:,6)=(1-Fe3_ratio(:,1)).*(D(:,5).*(2*FeO/Fe2O3)+D(:,6));
D2(:,12)=APFU_n(:,12).*H2O.*0.5.*(1./molar_mass)*100;
%% Itterates the calculation 10 times
for z=1:10
%calculate the initial APFU of cations and anions
[O2_Ti2,APFU_I2,MC2]=Amph_O2Ti(D2,W,wantTiOH); %calls the initial amphibole APFU calculation
%Lower Limits on Fe3+:
%Atoms per formula unit (APFU) assuming that all Fe is FeO
APFU_Fe2=Amph_Fe(D2,W,O2_Ti2);
%APFU assuming 8 Si cations
APFU_Si2=Amph_Si(APFU_Fe2,O2_Ti2);
%APFU assuming 16 cations (no vacancies on A)
APFU_Afull2=Amph_Afull(APFU_Fe2,O2_Ti2);
%APFU assuming Na in A site only
APFU_NaA2=Amph_NaA(APFU_Fe2,O2_Ti2);
APFU_low2=zeros(m,11);
% Fe3+ minimum estimate: highest of 3 normalization factors
for c=1:m
%if the 3 minima criteria have lower normalization factors than the
%four maximum criteria, then Fe3+ cannot be estimated and FeTotal=Fe2+
if find(APFU_Fe2(c,15:17)>APFU_Fe2(c,12:14))
APFU_low2(c,:)=APFU_Fe2(c,1:1:11);
low_check2{c,1}='Fe3+ cannot be estimated';
else %otherwise,a Fe3+ lower estimate can be made
%if the normalization factors are all greater than 1, then all Fe is assumed to be FeO
if (APFU_Fe2(c,12) > 1) && (APFU_Fe2(c,13) > 1) && (APFU_Fe2(c,14) > 1)
APFU_low2(c,:)=APFU_Fe2(c,1:1:11);
low_check2{c,1}={'All Fe is FeO'};
else
%If (8/Si) < (16/sum(all cations)) & < (15/sum(cations Si to Ca))
%, then the Si normalized formula is correct
if (APFU_Fe2(c,12) < APFU_Fe2(c,13)) && (APFU_Fe2(c,12) < APFU_Fe2(c,14))
APFU_low2(c,:)=APFU_Si2(c,1:1:11);
low_check2{c,1}={'Criterion 1-1: 8 Si cations on T'};
else %otherwise, consider the reamining two options
%If 16/sum(all cations) < (8/Si) & < (15/sum(cations Si to Ca))
%, then the formula normalized to 16 cations is correct
if (APFU_Fe2(c,13) < APFU_Fe2(c,12)) && (APFU_Fe2(c,13) < APFU_Fe2(c,14))
APFU_low2(c,:)=APFU_Afull2(c,1:1:11);
low_check2{c,1}={'Criterion 1-2: 16 total cations (no vac. on A)'};
else
%otherwise, 15/sum(cations Si to Ca) is the only remaining
%option for a normalization factor
APFU_low2(c,:)=APFU_NaA2(c,1:1:11);
low_check2{c,1}={'Criterion 1-3: Na on A site only'};
end
end
end
end
end
% Upper Limits on Fe3+
%APFU assuming all Fe is Fe2O3
APFU_Fe2O32=Amph_Fe2O3(D2,W,O2_Ti2);
O2_Nfact2=APFU_Fe2O32(:,19)./APFU_Fe2(:,19); %Normalization factor for all Fe as Fe2O3 relative to all Fe as FeO
%APFU assuming Al + Si in T site only
APFU_SiAlT2=Amph_SiAlT(APFU_Fe2,O2_Ti2);
%APFU assuming K only on the A site
APFU_KA2=Amph_KA(APFU_Fe2,O2_Ti2);
%APFU assuming fully occupied T & B sites
APFU_CaNaB2=Amph_CaNaB(APFU_Fe2,O2_Ti2);
%APFU assuming tetrahedral sites completely filled by 3+ and 4+ cations
APFU_10Fe32=Amph_10Fe3(APFU_Fe2,O2_Ti2);
%Fe3+ maximum estimate: highest of 4 normalization factors
APFU_hi2=zeros(m,11);
for c=1:m
%if the 3 minima criteria have lower normalization factors than the
%four maximum criteria, then Fe3+ cannot be estimated and FeTotal=Fe2+
if find(APFU_Fe2(c,15:17)>APFU_Fe2(c,12:14))
APFU_hi2(c,:)=APFU_Fe2(c,1:1:11);
hi_check2{c,1}={'Fe3+ cannot be estimated'};
else
%If the all Fe3+ normalization factor is grater than the other th
if (O2_Nfact2(c,1) > APFU_Fe2(c,15)) && (O2_Nfact2(c,1) > APFU_Fe2(c,16)) && (O2_Nfact2(c,1) > APFU_Fe2(c,17)) && (O2_Nfact2(c,1) > APFU_Fe2(c,18))
APFU_hi2(c,:)=APFU_Fe2O32(c,1:1:11);
hi_check2{c,1}={'Criterion 2-5: All Fe is Fe2O3'};
else
if (APFU_Fe2(c,15) > O2_Nfact2(c,1)) && (APFU_Fe2(c,15) > APFU_Fe2(c,16)) && (APFU_Fe2(c,15) > APFU_Fe2(c,17)) && (APFU_Fe2(c,15) > APFU_Fe2(c,18))
APFU_hi2(c,:)=APFU_SiAlT2(c,1:1:11);
hi_check2{c,1}={'Criterion 2-1: Al + Si normalized to 8 in T site'};
else
if (APFU_Fe2(c,16) > O2_Nfact2(c,1)) && (APFU_Fe2(c,16) > APFU_Fe2(c,15)) && (APFU_Fe2(c,16) > APFU_Fe2(c,17)) && (APFU_Fe2(c,16) > APFU_Fe2(c,18))
APFU_hi2(c,:)=APFU_KA2(c,1:1:11);
hi_check2{c,1}={'Criterion 2-2: K only on the A site, fully occupied T, B, & C sites'};
else
if (APFU_Fe2(c,17) > O2_Nfact2(c,1)) && (APFU_Fe2(c,17) > APFU_Fe2(c,15)) && (APFU_Fe2(c,17) > APFU_Fe2(c,16)) && (APFU_Fe2(c,17) > APFU_Fe2(c,18))
APFU_hi2(c,:)=APFU_CaNaB2(c,1:1:11);
hi_check2{c,1}={'Criterion 2-3: Fully occupied T & B sites'};
else
APFU_hi2(c,:)=APFU_10Fe32(c,1:1:11);
hi_check2{c,1}={'Criterion 2-4: tetrahedral sites completely filled by 3+ and 4+ cations'};
end
end
end
end
end
end
% calculate the formula with Fe3+/Fetotal determination from high and low
% limits
APFU2=(APFU_hi2+APFU_low2)./2;
%Adds OH
for c=1:m
if APFU_I2(c,12) > 0
APFU2(c,12) = APFU_I2(c,12); %OH from the normalized moles cations
else
APFU2(c,12) = MC2(c,12).*(MC2(c,1)./APFU2(c,1)); %OH is scaled based on the change in Si content
end
end
%Adds F
for c=1:m
if APFU_I2(c,13) > 0
APFU2(c,13) = APFU_I2(c,13); %F from the normalized moles cations
else
APFU2(c,13) = MC2(c,13).*(MC2(c,1)./APFU2(c,1)); %F is scaled based on the change in Si content
end
end
%Adds Cl
for c=1:m
if APFU_I2(c,14) > 0
APFU2(c,14) = APFU_I2(c,14); %Cl from the normalized moles cations
else
APFU2(c,14) = MC2(c,14).*(MC2(c,1)./APFU2(c,1)); %Cl is scaled based on the change in Si content
end
end
%initial OH estimate
for c=1:m
if (APFU2(c,12)+APFU2(c,13)+APFU2(c,14)) > 2 %if (OH_initial + F + Cl) > 2
if (APFU2(c,13)+APFU2(c,14)) < 2 % if (F + Cl) < 2
OH_2(c,1)=2-(APFU2(c,13)+APFU2(c,14)); %initial OH guess is 2-(F+Cl)
else
OH_2(c,1)=0; %W site is filled by Cl and F
end
else
if (APFU2(c,12)+APFU2(c,13)+APFU2(c,14)) < 2 %if (OH_initial + F + Cl) < 2
if (2-APFU2(c,13)-APFU2(c,14)) > 0 %if (2-F-Cl) < 2
OH_2(c,1)=(2-APFU2(c,13)-APFU2(c,14)); % OH = 2-F-Cl
else
OH_2(c,1)=0; %W site is filled by Cl and F
end
else
OH_2(c,1)=APFU2(c,12);
end
end
end
%OH estimation, Step 2: Adjustment for OH=2-2Ti
%some Ti goes into the T site instead of the M site
for c=1:m
%if Ti > (8-(Si+Al)) & (8-(Si+Al))>0
if APFU2(c,2)>(8-(APFU2(c,1)+APFU2(c,3))) && (8-(APFU2(c,1)+APFU2(c,3))) > 0
Ticorr2(c,1)=APFU2(c,2)-(8-(APFU2(c,1)+APFU2(c,3))); %Ti in M = Titotal - Ti in T
else
Ticorr2(c,1)=APFU2(c,2); %otherwise all Ti is in M
end
end
%Determine appropriate OH correction
for c=1:m
if strcmp(wantTiOH, 'y')
if (APFU2(c,12) + APFU2(c,13) + APFU2(c,14)) > 2 %If (OH + F + Cl) > 2
if ((2.*APFU2(c,12))./((APFU2(c,12)+ APFU2(c,13) + APFU2(c,14))-2.*APFU2(c,2)))>0 %if ((2*OH)/((OH+F+Cl)-2*Ti)) >0
APFU2(c,12)=((2.*APFU2(c,12))./((APFU2(c,12)+ APFU2(c,13) + APFU2(c,14))-2.*APFU2(c,2)));
else
APFU2(c,12)=0; %W is filled by F, Cl, and O
end
else
if (APFU2(c,12) + APFU2(c,13) + APFU2(c,14)) < 2 %If (OH + F + Cl) < 2
if ((2-APFU2(c,13)-APFU2(c,14))-2.*Ticorr2(c,1))>0 %if 2-F-Cl-2*Ti > 0
APFU2(c,12)=((2-APFU2(c,13)-APFU2(c,14))-2.*Ticorr2(c,1)); %OH=(2-F-Cl-2*Ti)
else
APFU2(c,12)=0; %W is filled by F, Cl, and O
end
else
APFU2(c,12)=APFU2(c,12); %OH content is not adjusted for Ti
end
end
else
APFU2(c,12)=OH_2(c,1);
end
end
%Moles of anions
APFU_an2(:,1)=APFU2(:,1)*2; %SiO2
APFU_an2(:,2)=APFU2(:,2)*2; %TiO2
APFU_an2(:,3)=APFU2(:,3)*1.5; %Al2O3
APFU_an2(:,4)=APFU2(:,4)*1.5; %Cr2O3
APFU_an2(:,5)=APFU2(:,5)*1.5; %Fe2O3
APFU_an2(:,6)=APFU2(:,6); %FeO
APFU_an2(:,7)=APFU2(:,7); %MnO
APFU_an2(:,8)=APFU2(:,8); %MgO
APFU_an2(:,9)=APFU2(:,9); %CaO
APFU_an2(:,10)=APFU2(:,10)*0.5; %Na2O
APFU_an2(:,11)=APFU2(:,11)*0.5; %K2O
APFU_an2(:,12)=APFU2(:,12)*0.5; %H2O
%for F
for c=1:m
if (APFU2(c,13)+APFU2(c,14))>2 %F + Cl cannot > 2
APFU_an2(c,13)=2.*(APFU2(c,13)./(APFU2(c,13)+APFU2(c,14))); %scales F
else
APFU_an2(c,13)=APFU2(c,13); %Does not scale F
end
end
%for Cl
for c=1:m
if (APFU2(c,13)+APFU2(c,14))>2 %F + Cl cannot > 2
APFU_an2(c,14)=2.*(APFU2(c,14)./(APFU2(c,13)+APFU2(c,14))); %scales Cl
else
APFU_an2(c,14)=APFU2(c,14); %Does not scale Cl
end
end
%the anionn sum may be > 24
anion_sum2=sum(APFU_an2(:,1:12),2)+0.5*APFU_an2(:,13)+0.5*APFU_an2(:,14);
anion_norm2=24./anion_sum2;
APFU_n2=APFU2.*anion_norm2; %cations normalized to 24 anions
APFU_ann2=APFU_an2.*anion_norm2; %anions normalized to 24 anions
Fe3_ratio2(:,1)=APFU_n2(:,5)./(APFU_n2(:,5)+APFU_n2(:,6));
molar_mass2=APFU_n2(:,1).*SiO2+APFU_n2(:,2).*TiO2+(APFU_n2(:,3)./2).*Al2O3+(APFU_n2(:,4)./2).*Cr2O3+(APFU_n2(:,5)./2).*Fe2O3+APFU_n2(:,6).*FeO+APFU_n2(:,7).*MnO+APFU_n2(:,8).*MgO+APFU_n2(:,9).*CaO+(APFU_n2(:,10)./2).*Na2O+(APFU_n2(:,11)./2).*K2O+(APFU_n2(:,12)./2).*H2O+APFU_ann2(:,13).*F+APFU_ann2(:,14).*Cl-APFU_ann2(:,13).*15.9994.*0.5-APFU_ann2(:,14).*15.9994.*0.5;
%new wt% of oxides
D2=D;
D2(:,5)=Fe3_ratio(:,1).*(D(:,5).*(2*FeO/Fe2O3)+D(:,6))./(2*FeO/Fe2O3);
D2(:,6)=(1-Fe3_ratio(:,1)).*(D(:,5).*(2*FeO/Fe2O3)+D(:,6));
D2(:,12)=APFU_n(:,12).*H2O.*0.5.*(1./molar_mass)*100;
end
%% Calculate structural formula
Strct_Frm=StrctFrm(APFU_n2);
%% Data Plotting
if strcmp(wantstrctfrm, 'y')
if strcmp(wantplot, 'y')
Amp_Plot(:,1)=Fe3_ratio2(:,1); %Fe3+/Fetotal
Amp_Plot(:,2)=(APFU_n2(:,5)+APFU_n2(:,6)); %Fetotal
Amp_Plot(:,3)=Strct_Frm(:,15)./(Strct_Frm(:,15)+Strct_Frm(:,16)); %Ca/(Ca+Na) in B
Amp_Plot(:,4)=Strct_Frm(:,19)+Strct_Frm(:,20)+2.*Strct_Frm(:,18); %A(Na + K + 2Ca), Ca=0
Amp_Plot(:,5)=Strct_Frm(:,4)+Strct_Frm(:,7)+2.*Strct_Frm(:,5); %C(Al + Fe3+ +2Ti)
Amp_Plot(:,6)=Strct_Frm(:,8)./(Strct_Frm(:,8)+Strct_Frm(:,9)+Strct_Frm(:,13)); %XMg
Amp_Plot(:,7)=Strct_Frm(:,9)./(Strct_Frm(:,9)+Strct_Frm(:,8)+Strct_Frm(:,10)); %Fe2+/(Fe2+ + Mg + Mn) in C
Amp_Plot(:,8)=Strct_Frm(:,7)./(Strct_Frm(:,7)+Strct_Frm(:,4)+Strct_Frm(:,5)); %Fe3+/(Fe3+ + Al + Ti) in C
Amp_Plot(:,9)=Strct_Frm(:,1); %Si (T)
%prompts the user to determine which symbols to use
prompt2='What symbols do you want to use?:';
disp('Options are (CASE SENSITIVE): circle, square, diamond, and triangle.') %for simplicity only 4 options are available
wantsymbols=input(prompt2,'s');
%assigns the variable the appropriate symbol marker
if strcmp(wantsymbols,'circle')
symb='o';
end
if strcmp(wantsymbols,'square')
symb='s';
end
if strcmp(wantsymbols,'diamond')
symb='d';
end
if strcmp(wantsymbols,'triangle')
symb='^';
end
%prompts the user to determine which symbol fill color to use
prompt3='Specify the fill color:';
disp('Options are (CASE SENSITIVE): blue, orange, yellow, purple, green, cyan, & red.')
wantfil=input(prompt3,'s');
%assigns the variable the appropriate fill color
if strcmp(wantfil,'blue')
fil=[0 0.4470 0.7410];
end
if strcmp(wantfil,'orange')
fil=[0.8500 0.3250 0.0980];
end
if strcmp(wantfil,'yellow')
fil=[0.9290 0.6940 0.1250];
end
if strcmp(wantfil,'purple')
fil=[0.4940 0.1840 0.5560];
end
if strcmp(wantfil,'green')
fil=[0.4660 0.6740 0.1880];
end
if strcmp(wantfil,'cyan')
fil=[0.3010 0.7450 0.9330];
end
if strcmp(wantfil,'red')
fil=[0.6350 0.0780 0.1840];
end
%prompts the user to determine which symbol fill color to use
prompt4='Specify symbol size (numeric scalar):';
disp('Note: Between 50 & 200 is good for most applications.')
symbsize=input(prompt4);
prompt5='Do you want to plot Ca, Na-Ca, and Na amphibole classification diagrams? (y|n):';
want_classplot= input(prompt5, 's');
if strcmp(want_classplot, 'y')
%Plots for Ca amphiboles
figure('Name','Calcium Amphiboles');
xlim([0 2])
hold on
ylim([0 1])
hold on
plot([0 2],[0.5 0.5],'k','linewidth',0.5)
hold on
plot([0.5 0.5],[0.0 1.0],'k','linewidth',0.5)
hold on
plot([1.5 1.5],[0.0 1.0],'k','linewidth',0.5)
hold on
text(0.25,0.25,'Tremolite','FontSize',12,'HorizontalAlignment','center')
text(0.25,0.75,'Edenite','FontSize',12,'HorizontalAlignment','center')
text(1,0.25,'Magnesio-Hornblende','FontSize',12,'HorizontalAlignment','center')
text(1,0.75,'Pargasite','FontSize',12,'HorizontalAlignment','center')
text(1.75,0.75,'Sadanagaite','FontSize',12,'HorizontalAlignment','center')
text(1.75,0.25,'Tschermakite','FontSize',12,'HorizontalAlignment','center')
xlabel('^{C}(Al + Fe^{3+} + 2Ti) APFU')
ylabel('^{A}(Na + K + 2Ca) APFU')
box on
hold on
for c=1:m
if Amp_Plot(c,3) >= 0.75
scatter(Amp_Plot(c,5),Amp_Plot(c,4),symbsize,symb,'filled','MarkerFaceAlpha',3/8,'MarkerEdgeColor',[0 0 0],'MarkerFaceColor',fil)
hold on
end
end
figure('Name','Calcium Amphiboles 2');
xlim([5.5 8])
hold on
ylim([0 1])
hold on
plot([5.5 8],[0.5 0.5],'k','linewidth',0.5)
hold on
plot([6.5 6.5],[0.0 1.0],'k','linewidth',0.5)
hold on
plot([7.5 7.5],[0.0 1.0],'k','linewidth',0.5)
hold on
plot([7.5 8],[0.9 0.9],'k','linewidth',0.5)
hold on
text(7.0,0.25,'Ferro-hornblende','FontSize',12,'HorizontalAlignment','center')
text(6.0,0.25,'Ferro-tschermakite','FontSize',12,'HorizontalAlignment','center')
text(7.0,0.75,'Magnesio-Hornblende','FontSize',12,'HorizontalAlignment','center')
text(6.0,0.75,'Tschermakite','FontSize',12,'HorizontalAlignment','center')
text(7.75,0.25,'Ferro-actinolite','FontSize',12,'HorizontalAlignment','center')
text(7.75,0.75,'Actinolite','FontSize',12,'HorizontalAlignment','center')
text(7.75,0.95,'Tremolite','FontSize',12,'HorizontalAlignment','center')
xlabel('Si APFU')
ylabel('X_{Mg}')
box on
hold on
for c=1:m
if Amp_Plot(c,3) >= 0.75
scatter(Amp_Plot(c,9),Amp_Plot(c,6),symbsize,symb,'filled','MarkerFaceAlpha',3/8,'MarkerEdgeColor',[0 0 0],'MarkerFaceColor',fil)
hold on
end
end
%Na-Ca amphiboles
figure('Name','Sodium-Calcium Amphiboles');
xlim([0 2])
hold on
ylim([0 1])
hold on
plot([0 2],[0.5 0.5],'k','linewidth',0.5)
hold on
plot([0.5 0],[0 0.5],'k','linewidth',0.5)
hold on
plot([0.5 0.5],[0.5 1.0],'k','linewidth',0.5)
hold on
plot([1.5 1.5],[0.0 1.0],'k','linewidth',0.5)
hold on
text(0.25,0.75,'Richterite','FontSize',12,'HorizontalAlignment','center')
text(1,0.25,'Winchite','FontSize',12,'HorizontalAlignment','center')
text(1,0.75,'Katophorite','FontSize',12,'HorizontalAlignment','center')
text(1.75,0.75,'Taramite','FontSize',12,'HorizontalAlignment','center')
text(1.75,0.25,'Barroisite','FontSize',12,'HorizontalAlignment','center')
xlabel('^{C}(Al + Fe^{3+} + 2Ti) APFU')
ylabel('^{A}(Na + K + 2Ca) APFU')
box on
hold on
for c=1:m
if Amp_Plot(c,3) < 0.75 && Amp_Plot(c,3) > 0.25
scatter(Amp_Plot(c,5),Amp_Plot(c,4),symbsize,symb,'filled','MarkerFaceAlpha',3/8,'MarkerEdgeColor',[0 0 0],'MarkerFaceColor',fil)
hold on
end
end
%Na amphiboles
figure('Name','Sodium Amphiboles');
xlim([0 2])
hold on
ylim([0 1])
hold on
plot([1 2],[0.5 0.5],'k','linewidth',0.5)
hold on
plot([1.5 1.5],[0.5 1.0],'k','linewidth',0.5)
hold on
plot([0.5 1.5],[1 0],'k','linewidth',0.5)
hold on
text(1.15,0.75,'Eckermannite','FontSize',12,'HorizontalAlignment','center')
text(1.75,0.75,'Nyboite','FontSize',12,'HorizontalAlignment','center')
text(1.75,0.25,'Glaucophane','FontSize',12,'HorizontalAlignment','center')
xlabel('^{C}(Al + Fe^{3+} + 2Ti) APFU')
ylabel('^{A}(Na + K + 2Ca) APFU')
box on
hold on
for c=1:m
if Amp_Plot(c,3) <= 0.25
scatter(Amp_Plot(c,5),Amp_Plot(c,4),symbsize,symb,'filled','MarkerFaceAlpha',3/8,'MarkerEdgeColor',[0 0 0],'MarkerFaceColor',fil)
hold on
end
end
figure('Name','Sodium Amphiboles 2');
xlim([0 1])
hold on
ylim([0 1])
hold on
plot([0 1],[0.5 0.5],'k','linewidth',0.5)
hold on
plot([0.5 0.5],[0 1],'k','linewidth',0.5)
hold on
text(0.25,0.25,'Glaucophane','FontSize',12,'HorizontalAlignment','center')
text(0.25,0.75,'Ferro-Glaucophane','FontSize',12,'HorizontalAlignment','center')
text(0.75,0.25,'Magnesio-Riebeckite','FontSize',12,'HorizontalAlignment','center')
text(0.75,0.75,'Riebeckite','FontSize',12,'HorizontalAlignment','center')
xlabel('Fe^{3+}/(Fe^{3+} + Al + Ti)')
ylabel('Fe^{2+}/(Fe^{2+} + Mg + Mn)')
box on
hold on
for c=1:m
if Amp_Plot(c,3) <= 0.25
scatter(Amp_Plot(c,8),Amp_Plot(c,7),symbsize,symb,'filled','MarkerFaceAlpha',3/8,'MarkerEdgeColor',[0 0 0],'MarkerFaceColor',fil)
hold on
end
end
end
prompt6='Do you want to plot Fe3+ vs FeTotal? (y|n):';
want_FePlot= input(prompt6, 's');
if strcmp(want_FePlot, 'y')
figure('Name','Fe3+/Fetotal vs Fetotal');
xlim([0 5])
hold on
ylim([0 1])
hold on
xlabel('\SigmaFe (APFU)')
ylabel('Fe^{3+}/\SigmaFe')
box on
hold on
scatter(Amp_Plot(:,2),Amp_Plot(:,1),symbsize,symb,'filled','MarkerFaceAlpha',3/8,'MarkerEdgeColor',[0 0 0],'MarkerFaceColor',fil)
end
end
end
%% Calculates Outputs
%automatic Fe3+ estimation
%W cations
W_site(:,1)=APFU_n2(:,12); %OH
W_site(:,2)=APFU_n2(:,13); %F
W_site(:,3)=APFU_n2(:,14); %Cl
W_site(:,4)=APFU_n2(:,12)+APFU_n2(:,13)+APFU_n2(:,14); %W sum
all=[Strct_Frm W_site];
Strct_Frm=array2table(all,'VariableNames',{'Si_T','Al_T','Sum_T','Al_C','Ti_C','Cr_C','Fe3_C','Mg_C','Fe2_C','Mn_C','Sum_C','Mg_B','Fe2_B','Mn_B','Ca_B','Na_B','Sum_B','Ca_A','Na_A','K_A','Cation_Sum','OH_W','F_W','Cl_W','W_sum'});
APFU=array2table(APFU_n2,'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K','OH','F','Cl'});
limits=[low_check hi_check];
Fe3_limits=array2table(limits,'VariableNames',{'Low_Fe3_limits','High_Fe3_limits'});
amph_class=[APFU_Fe(:,12:18) O2_Nfact];
Fe3_class=array2table(amph_class, 'VariableNames',{'Crit1_1','Crit1_2','Crit1_3','Crit2_1','Crit2_2','Crit2_3','Crit2_4','Crit2_5'});
%Fe3+ low estimates:
%Fe2+ Only formula
APFU_FeT=array2table(APFU_Fe(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
%Normalized to 8Si
APFU_SiT=array2table(APFU_Si2(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
%Normalized to [Si + Al + Ti + Fe3+ + Fe2+ + Mn + Mg + Ca + Na + K] = 16
APFU_AfullT=array2table(APFU_Afull2(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
%Normalized to [Si + Al + Ti + Fe3+ + Fe2+ + Mn + Mg + Ca] = 15
APFU_NaAT=array2table(APFU_NaA2(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
%Fe3+ high estimates:
%Fe3+ only
APFU_Fe2O3T=array2table(APFU_Fe2O32(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
%Normalized to [Si + Al] = 8 cations
APFU_SiAlT=array2table(APFU_SiAlT2(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
%Normalized to [Si + Al + Ti + Fe + Mn + Mg + Ca + Na] = 15 cations
APFU_KAT=array2table(APFU_KA2(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
%Normalized to [Si + Al + Ti + Fe + Mn + Mg + Ca + Na] = 15 cations
APFU_CaNaBT=array2table(APFU_CaNaB2(:,1:11),'VariableNames',{'Si','Ti','Al','Cr','Fe3','Fe2','Mn','Mg','Ca','Na','K'});
else %Fe2+ only calculation
APFU=APFU_Fe(:,1:11);
%Adds OH, scales for subsequent itterations
for c=1:m
if APFU_I(c,12) > 0
APFU(c,12) = APFU_I(c,12); %OH from the normalized moles cations
else
APFU(c,12) = MC(c,12).*(MC(c,1)./APFU(c,1)); %OH is scaled based on the change in Si content
end
end
%Adds F
for c=1:m
if APFU_I(c,13) > 0
APFU(c,13) = APFU_I(c,13); %F from the normalized moles cations
else
APFU(c,13) = MC(c,13).*(MC(c,1)./APFU(c,1)); %F is scaled based on the change in Si content
end
end
%Adds Cl
for c=1:m
if APFU_I(c,14) > 0
APFU(c,14) = APFU_I(c,14); %Cl from the normalized moles cations
else
APFU(c,14) = MC(c,14).*(MC(c,1)./APFU(c,1)); %Cl is scaled based on the change in Si content
end
end
for c=1:m
if (APFU(c,12)+APFU(c,13)+APFU(c,14)) > 2 %if (OH_initial + F + Cl) > 2
if (APFU(c,13)+APFU(c,14)) < 2 % if (F + Cl) < 2
OH_1(c,1)=2-(APFU(c,13)+APFU(c,14)); %initial OH guess is 2-(F+Cl)
else
OH_1(c,1)=0; %W site is filled by Cl and F
end
else
if (APFU(c,12)+APFU(c,13)+APFU(c,14)) < 2 %if (OH_initial + F + Cl) < 2
if (2-APFU(c,13)-APFU(c,14)) > 0 %if (2-F-Cl) < 2
OH_1(c,1)=(2-APFU(c,13)-APFU(c,14)); % OH = 2-F-Cl
else
OH_1(c,1)=0; %W site is filled by Cl and F
end
else
OH_1(c,1)=APFU(c,12);
end
end
end
%OH estimation, Step 2: Adjustment for OH=2-2Ti
%some Ti goes into the T site instead of the M site
for c=1:m
%if Ti > (8-(Si+Al)) & (8-(Si+Al))>0
if APFU(c,2)>(8-(APFU(c,1)+APFU(c,3))) && (8-(APFU(c,1)+APFU(c,3))) > 0
Ticorr(c,1)=APFU(c,2)-(8-(APFU(c,1)+APFU(c,3))); %Ti in M = Titotal - Ti in T
else
Ticorr(c,1)=APFU(c,2); %otherwise all Ti is in M
end
end
% Determine appropriate OH correction
for c=1:m
if strcmp(wantTiOH, 'y')
if (APFU(c,12) + APFU(c,13) + APFU(c,14)) > 2 %If (OH + F + Cl) > 2
if ((2.*APFU(c,12))./((APFU(c,12)+ APFU(c,13) + APFU(c,14))-2.*APFU(c,2)))>0 %if ((2*OH)/((OH+F+Cl)-2*Ti)) >0
APFU(c,12)=((2.*APFU(c,12))./((APFU(c,12)+ APFU(c,13) + APFU(c,14))-2.*APFU(c,2)));
else
APFU(c,12)=0; %W is filled by F, Cl, and O
end
else
if (APFU(c,12) + APFU(c,13) + APFU(c,14)) < 2 %If (OH + F + Cl) < 2
if ((2-APFU(c,13)-APFU(c,14))-2.*Ticorr(c,1))>0 %if 2-F-Cl-2*Ti > 0