-
Notifications
You must be signed in to change notification settings - Fork 653
/
Copy pathcapsulenet-multi-gpu.py
138 lines (117 loc) · 6.17 KB
/
capsulenet-multi-gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Keras implementation of CapsNet in Hinton's paper Dynamic Routing Between Capsules.
The current version maybe only works for TensorFlow backend. Actually it will be straightforward to re-write to TF code.
Adopting to other backends should be easy, but I have not tested this.
Usage:
python capsulenet-multi-gpu.py
python capsulenet-multi-gpu.py --gpus 2
... ...
Result:
About 55 seconds per epoch on two GTX1080Ti GPU cards
Author: Xifeng Guo, E-mail: `guoxifeng1990@163.com`, Github: `https://github.com/XifengGuo/CapsNet-Keras`
"""
from keras import optimizers
from keras import backend as K
K.set_image_data_format('channels_last')
from capsulenet import CapsNet, margin_loss, load_mnist, manipulate_latent, test
def train(model, data, args):
"""
Training a CapsuleNet
:param model: the CapsuleNet model
:param data: a tuple containing training and testing data, like `((x_train, y_train), (x_test, y_test))`
:param args: arguments
:return: The trained model
"""
# unpacking the data
(x_train, y_train), (x_test, y_test) = data
# callbacks
log = callbacks.CSVLogger(args.save_dir + '/log.csv')
tb = callbacks.TensorBoard(log_dir=args.save_dir + '/tensorboard-logs',
batch_size=args.batch_size, histogram_freq=args.debug)
lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch: args.lr * (0.9 ** epoch))
# compile the model
model.compile(optimizer=optimizers.Adam(lr=args.lr),
loss=[margin_loss, 'mse'],
loss_weights=[1., args.lam_recon])
"""
# Training without data augmentation:
model.fit([x_train, y_train], [y_train, x_train], batch_size=args.batch_size, epochs=args.epochs,
validation_data=[[x_test, y_test], [y_test, x_test]], callbacks=[log, tb, checkpoint, lr_decay])
"""
# Begin: Training with data augmentation ---------------------------------------------------------------------#
def train_generator(x, y, batch_size, shift_fraction=0.):
train_datagen = ImageDataGenerator(width_shift_range=shift_fraction,
height_shift_range=shift_fraction) # shift up to 2 pixel for MNIST
generator = train_datagen.flow(x, y, batch_size=batch_size)
while 1:
x_batch, y_batch = generator.next()
yield ([x_batch, y_batch], [y_batch, x_batch])
# Training with data augmentation. If shift_fraction=0., also no augmentation.
model.fit_generator(generator=train_generator(x_train, y_train, args.batch_size, args.shift_fraction),
steps_per_epoch=int(y_train.shape[0] / args.batch_size),
epochs=args.epochs,
validation_data=[[x_test, y_test], [y_test, x_test]],
callbacks=[log, tb, lr_decay])
# End: Training with data augmentation -----------------------------------------------------------------------#
from utils import plot_log
plot_log(args.save_dir + '/log.csv', show=True)
return model
if __name__ == "__main__":
import numpy as np
import tensorflow as tf
import os
from keras.preprocessing.image import ImageDataGenerator
from keras import callbacks
from keras.utils.vis_utils import plot_model
from keras.utils import multi_gpu_model
# setting the hyper parameters
import argparse
parser = argparse.ArgumentParser(description="Capsule Network on MNIST.")
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--batch_size', default=300, type=int)
parser.add_argument('--lam_recon', default=0.392, type=float,
help="The coefficient for the loss of decoder")
parser.add_argument('-r', '--routings', default=3, type=int,
help="Number of iterations used in routing algorithm. should > 0")
parser.add_argument('--shift_fraction', default=0.1, type=float,
help="Fraction of pixels to shift at most in each direction.")
parser.add_argument('--debug', default=0, type=int,
help="Save weights by TensorBoard")
parser.add_argument('--save_dir', default='./result')
parser.add_argument('-t', '--testing', action='store_true',
help="Test the trained model on testing dataset")
parser.add_argument('--digit', default=5, type=int,
help="Digit to manipulate")
parser.add_argument('-w', '--weights', default=None,
help="The path of the saved weights. Should be specified when testing")
parser.add_argument('--lr', default=0.001, type=float,
help="Initial learning rate")
parser.add_argument('--gpus', default=2, type=int)
args = parser.parse_args()
print(args)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# load data
(x_train, y_train), (x_test, y_test) = load_mnist()
# define model
with tf.device('/cpu:0'):
model, eval_model, manipulate_model = CapsNet(input_shape=x_train.shape[1:],
n_class=len(np.unique(np.argmax(y_train, 1))),
routings=args.routings)
model.summary()
plot_model(model, to_file=args.save_dir+'/model.png', show_shapes=True)
# train or test
if args.weights is not None: # init the model weights with provided one
model.load_weights(args.weights)
if not args.testing:
# define muti-gpu model
multi_model = multi_gpu_model(model, gpus=args.gpus)
train(model=multi_model, data=((x_train, y_train), (x_test, y_test)), args=args)
model.save_weights(args.save_dir + '/trained_model.h5')
print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)
test(model=eval_model, data=(x_test, y_test), args=args)
else: # as long as weights are given, will run testing
if args.weights is None:
print('No weights are provided. Will test using random initialized weights.')
manipulate_latent(manipulate_model, (x_test, y_test), args)
test(model=eval_model, data=(x_test, y_test), args=args)