This datasets are used to benchmark patch augmentation performance of patchmentation.
The benchmarking results can be found at Xu-Justin/patchmentation-yolov5.
-
Using PIP
pip install -r requirements.txt
-
Using Docker (recommended)
docker pull jstnxu/patchmentation:dataset docker run -it \ -v {cache_folder}:/root/.cache/patchmentation-data \ -v {data_folder}:/workspace/data \ jstnxu/patchmentation:dataset /bin/bash
-
change
{cache_folder}
to local path to save cache. -
change
{data_folder}
to local path to save generated data.
-
-
Training Dataset
train-pascal-voc-2007
-
Number of Images: 2501
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Train
python3 dataset.py --version train-pascal-voc-2007 --generate
train-pascal-voc-2007-tiny
-
Number of Images: 200
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Train
python3 dataset.py --version train-pascal-voc-2007-tiny --generate --batch 2
train-pascal-voc-2007-v1
-
Number of Images: 2,500
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Train
-
Actions
-
filter.FilterWidth(50, Comparator.GreaterEqual)
-
filter.FilterHeight(50, Comparator.GreaterEqual)
-
transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)
-
-
Kwargs
max_n_patches = 10
python3 dataset.py --version train-pascal-voc-2007-v1 --generate --batch 30
train-pascal-voc-2007-v2
-
Number of images: 2,500
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Train
-
Actions
-
filter.FilterWidth(50, Comparator.GreaterEqual)
-
filter.FilterHeight(50, Comparator.GreaterEqual)
-
transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)
-
filter.FilterWidth(30, Comparator.GreaterEqual)
-
filter.FilterHeight(30, Comparator.GreaterEqual)
-
transform.SoftEdge(13, 20)
-
-
Kwargs
-
max_n_patches = 20
-
visibility_threshold = 1.0
-
python3 dataset.py --version train-pascal-voc-2007-v2 --generate --batch 30
train-pascal-voc-2007-v3
-
Number of images: 2,500
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Train
-
Actions
-
filter.FilterWidth(50, Comparator.GreaterEqual)
-
filter.FilterHeight(50, Comparator.GreaterEqual)
-
transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)
-
-
Kwargs
-
max_n_patches = 20
-
visibility_threshold = 0.8
-
ratio_negative_patch = 5.0
-
iou_negative_patch = 0.2
-
python3 dataset.py --version train-pascal-voc-2007-v3 --generate --batch 30
train-pascal-voc-2007-v4
-
Number of images: 2,500
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Train
-
Actions
-
filter.FilterWidth(50, Comparator.GreaterEqual)
-
filter.FilterHeight(50, Comparator.GreaterEqual)
-
transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)
-
filter.FilterWidth(30, Comparator.GreaterEqual)
-
filter.FilterHeight(30, Comparator.GreaterEqual)
-
transform.SoftEdge(13, 20)
-
-
Kwargs
-
max_n_patches = 20
-
visibility_threshold = 0.8
-
ratio_negative_patch = 5.0
-
iou_negative_patch = 0.2
-
python3 dataset.py --version train-pascal-voc-2007-v4 --generate --batch 30
train-penn-fudan-ped-person
-
Number of images: 100
-
Number of Classes: 1
-
Source: Penn Fudan Ped
python3 dataset.py --version train-penn-fudan-ped-person --generate --batch 100
train-campus
-
Number of images: 250
-
Number of Classes: 1
-
Source: Campus - Garden1, Penn Fudan Ped
-
Actions
-
filter.FilterWidth(20, Comparator.GreaterEqual)
-
filter.FilterHeight(20, Comparator.GreaterEqual)
-
transform.RandomResize(height_range=(150, 600), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)
-
transform.SoftEdge(5, 10)
-
-
Kwargs
-
max_n_patches = 30
-
visibility_threshold = 0.8
-
python3 dataset.py --version train-campus --generate --batch 50
-
-
Validation Dataset
valid-pascal-voc-2007
-
Number of Images: 2,510
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Val
python3 dataset.py --version valid-pascal-voc-2007 --generate
valid-penn-fudan-ped-person
-
Number of images: 70
-
Number of Classes: 1
-
Source: Penn Fudan Ped
python3 dataset.py --version valid-penn-fudan-ped-person --generate
valid-campus
-
Number of images: 256
-
Number of Classes: 1
-
Source: Campus - Garden1
python3 dataset.py --version valid-campus --generate
-
-
Test Dataset
test-pascal-voc-2007
-
Number of Images: 4,952
-
Number of Classes: 20
-
Source: Pascal VOC 2007 - Test
python3 dataset.py --version test-pascal-voc-2007 --generate
test-campus
-
Number of images: 11,538
-
Number of Classes: 1
-
Source: Campus - Garden1
python3 dataset.py --version test-campus --generate
-
Priority* | Arguments | Type | Description |
---|---|---|---|
- | --version |
one or more str |
Dataset version(s). |
- | --overwrite |
store_true |
Overwrite existing dataset / zip. |
- | --batch |
int |
Number of batch to generate (default=1 ) |
1 | --generate |
store_true |
Generate the dataset. If overwrite is true, it will remove the dataset (if exists) before generating. |
2 | --zip |
store_true |
Zip the dataset. If overwrite is true, it will remove the dataset zip (if exists) before zipping. |
3 | --upload |
store_true |
Upload the dataset zip. |
4 | --remove-zip |
store_true |
Remove the dataset zip, if exists. |
5 | --download |
one or more url |
Download the dataset zip. If overwrite is true, it will remove the dataset zip (if exists) before downloading. |
6 | --unzip |
store_true |
Unzip the dataset zip. If overwrite is true, it will remove the dataset (if exists) before unzipping. |
7 | --validate |
store_true |
Validate the dataset. |
8 | --remove |
store_true |
Remove the dataset, if exists. |
*Smaller priority number will be executed first
This project was developed as part of thesis project, Computer Science, BINUS University.