Skip to content

Latest commit

 

History

History
340 lines (193 loc) · 9.07 KB

README.md

File metadata and controls

340 lines (193 loc) · 9.07 KB

Patchmentation Dataset

This datasets are used to benchmark patch augmentation performance of patchmentation.

The benchmarking results can be found at Xu-Justin/patchmentation-yolov5.

Dependency

  • Using PIP

    pip install -r requirements.txt
  • Using Docker (recommended)

    docker pull jstnxu/patchmentation:dataset
    docker run -it \
      -v {cache_folder}:/root/.cache/patchmentation-data \
      -v {data_folder}:/workspace/data \
      jstnxu/patchmentation:dataset /bin/bash
    • change {cache_folder} to local path to save cache.

    • change {data_folder} to local path to save generated data.

Dataset Spesification

  • Training Dataset

    train-pascal-voc-2007
    • Number of Images: 2501

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    python3 dataset.py --version train-pascal-voc-2007 --generate
    train-pascal-voc-2007-tiny
    • Number of Images: 200

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    python3 dataset.py --version train-pascal-voc-2007-tiny --generate --batch 2
    train-pascal-voc-2007-v1
    • Number of Images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

    • Kwargs

      • max_n_patches = 10

    python3 dataset.py --version train-pascal-voc-2007-v1 --generate --batch 30
    train-pascal-voc-2007-v2
    • Number of images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

      • filter.FilterWidth(30, Comparator.GreaterEqual)

      • filter.FilterHeight(30, Comparator.GreaterEqual)

      • transform.SoftEdge(13, 20)

    • Kwargs

      • max_n_patches = 20

      • visibility_threshold = 1.0


    python3 dataset.py --version train-pascal-voc-2007-v2 --generate --batch 30
    train-pascal-voc-2007-v3
    • Number of images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

    • Kwargs

      • max_n_patches = 20

      • visibility_threshold = 0.8

      • ratio_negative_patch = 5.0

      • iou_negative_patch = 0.2


    python3 dataset.py --version train-pascal-voc-2007-v3 --generate --batch 30
    train-pascal-voc-2007-v4
    • Number of images: 2,500

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Train

    • Actions

      • filter.FilterWidth(50, Comparator.GreaterEqual)

      • filter.FilterHeight(50, Comparator.GreaterEqual)

      • transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

      • filter.FilterWidth(30, Comparator.GreaterEqual)

      • filter.FilterHeight(30, Comparator.GreaterEqual)

      • transform.SoftEdge(13, 20)

    • Kwargs

      • max_n_patches = 20

      • visibility_threshold = 0.8

      • ratio_negative_patch = 5.0

      • iou_negative_patch = 0.2


    python3 dataset.py --version train-pascal-voc-2007-v4 --generate --batch 30
    train-penn-fudan-ped-person
    • Number of images: 100

    • Number of Classes: 1

    • Source: Penn Fudan Ped

    python3 dataset.py --version train-penn-fudan-ped-person --generate --batch 100
    train-campus
    • Number of images: 250

    • Number of Classes: 1

    • Source: Campus - Garden1, Penn Fudan Ped

    • Actions

      • filter.FilterWidth(20, Comparator.GreaterEqual)

      • filter.FilterHeight(20, Comparator.GreaterEqual)

      • transform.RandomResize(height_range=(150, 600), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)

      • transform.SoftEdge(5, 10)

    • Kwargs

      • max_n_patches = 30

      • visibility_threshold = 0.8


    python3 dataset.py --version train-campus --generate --batch 50
  • Validation Dataset

    valid-pascal-voc-2007
    • Number of Images: 2,510

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Val

    python3 dataset.py --version valid-pascal-voc-2007 --generate
    valid-penn-fudan-ped-person
    • Number of images: 70

    • Number of Classes: 1

    • Source: Penn Fudan Ped

    python3 dataset.py --version valid-penn-fudan-ped-person --generate
    valid-campus
    • Number of images: 256

    • Number of Classes: 1

    • Source: Campus - Garden1

    python3 dataset.py --version valid-campus --generate
  • Test Dataset

    test-pascal-voc-2007
    • Number of Images: 4,952

    • Number of Classes: 20

    • Source: Pascal VOC 2007 - Test

    python3 dataset.py --version test-pascal-voc-2007 --generate
    test-campus
    • Number of images: 11,538

    • Number of Classes: 1

    • Source: Campus - Garden1

    python3 dataset.py --version test-campus --generate

Arguments

Priority* Arguments Type Description
- --version one or more str Dataset version(s).
- --overwrite store_true Overwrite existing dataset / zip.
- --batch int Number of batch to generate (default=1)
1 --generate store_true Generate the dataset. If overwrite is true, it will remove the dataset (if exists) before generating.
2 --zip store_true Zip the dataset. If overwrite is true, it will remove the dataset zip (if exists) before zipping.
3 --upload store_true Upload the dataset zip.
4 --remove-zip store_true Remove the dataset zip, if exists.
5 --download one or more url Download the dataset zip. If overwrite is true, it will remove the dataset zip (if exists) before downloading.
6 --unzip store_true Unzip the dataset zip. If overwrite is true, it will remove the dataset (if exists) before unzipping.
7 --validate store_true Validate the dataset.
8 --remove store_true Remove the dataset, if exists.

*Smaller priority number will be executed first


This project was developed as part of thesis project, Computer Science, BINUS University.