forked from max-andr/provably-robust-boosting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexps.sh
executable file
·52 lines (44 loc) · 5.1 KB
/
exps.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env bash
### Note: the best way to compare to our results is just to directly use the provided models.
### Some models retrained from scratch may give slightly different numbers.
# All datasets: breast_cancer diabetes cod_rna mnist_1_5 mnist_2_6 fmnist_sandal_sneaker gts_120_warning gts_30_70
# Train stumps on binary classification datasets
for model in plain robust_bound robust_exact; do
nohup python train.py --dataset=breast_cancer --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/breast_cancer-stump-${model}.out &
nohup python train.py --dataset=diabetes --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/diabetes-stump-${model}.out &
nohup python train.py --dataset=cod_rna --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/cod_rna-stump-${model}.out &
nohup python train.py --dataset=mnist_1_5 --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/mnist_1_5-stump-${model}.out &
nohup python train.py --dataset=mnist_2_6 --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/mnist_2_6-stump-${model}.out &
nohup python train.py --dataset=fmnist_sandal_sneaker --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/fmnist_sandal_sneaker-stump-${model}.out &
nohup python train.py --dataset=gts_100_roadworks --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/gts_100_roadworks-stump-${model}.out &
nohup python train.py --dataset=gts_30_70 --weak_learner=stump --model=${model} --lr=1.0 >> run_logs/gts_30_70-stump-${model}.out &
done
# Train stumps with adversarial training (note: requires smaller learning rate)
for model in at_cube; do
nohup python train.py --dataset=breast_cancer --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/breast_cancer-stump-${model}.out &
nohup python train.py --dataset=diabetes --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/diabetes-stump-${model}.out &
nohup python train.py --dataset=cod_rna --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/cod_rna-stump-${model}.out &
nohup python train.py --dataset=mnist_1_5 --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/mnist_1_5-stump-${model}.out &
nohup python train.py --dataset=mnist_2_6 --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/mnist_2_6-stump-${model}.out &
nohup python train.py --dataset=fmnist_sandal_sneaker --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/fmnist_sandal_sneaker-stump-${model}.out &
nohup python train.py --dataset=gts_100_roadworks --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/gts_100_roadworks-stump-${model}.out &
nohup python train.py --dataset=gts_30_70 --weak_learner=stump --model=${model} --lr=0.1 >> run_logs/gts_30_70-stump-${model}.out &
done
# Train trees on binary classification datasets
max_depth=4
for model in plain at_cube robust_bound; do
nohup python train.py --dataset=breast_cancer --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.01 >> run_logs/breast_cancer-tree-${model}.out &
nohup python train.py --dataset=diabetes --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.2 >> run_logs/diabetes-tree-${model}.out &
nohup python train.py --dataset=cod_rna --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.2 >> run_logs/cod_rna-tree-${model}.out &
nohup python train.py --dataset=mnist_1_5 --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.2 >> run_logs/mnist_1_5-tree-${model}.out &
nohup python train.py --dataset=mnist_2_6 --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.2 >> run_logs/mnist_2_6-tree-${model}.out &
nohup python train.py --dataset=fmnist_sandal_sneaker --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.2 >> run_logs/fmnist_sandal_sneaker-tree-${model}.out &
nohup python train.py --dataset=gts_100_roadworks --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.01 >> run_logs/gts_100_roadworks-tree-${model}.out &
nohup python train.py --dataset=gts_30_70 --weak_learner=tree --max_depth=$max_depth --model=${model} --lr=0.01 >> run_logs/gts_30_70-tree-${model}.out &
done
### Multi-class experiments: robust models on MNIST, FMNIST, CIFAR-10
# Advice: multiclass models require quite some time to train. In case you want to get results faster you can try to
# subsample the thresholds by setting e.g. n_bins=10. However, this might slightly negatively affect the results.
nohup python train.py --dataset=mnist --weak_learner=tree --max_depth=30 --model=robust_bound --lr=0.05 >> run_logs/mnist-tree-robust_bound.out &
nohup python train.py --dataset=fmnist --weak_learner=tree --max_depth=30 --model=robust_bound --lr=0.05 >> run_logs/fmnist-tree-robust_bound.out &
nohup python train.py --dataset=cifar10 --weak_learner=tree --max_depth=4 --model=robust_bound --lr=0.1 >> run_logs/cifar10-tree-robust_bound.out &