-
Notifications
You must be signed in to change notification settings - Fork 85
/
helper_net.py
341 lines (292 loc) · 15.7 KB
/
helper_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import numpy as np
import tensorflow as tf
from scipy.optimize import linear_sum_assignment
class Ops:
@staticmethod
def lrelu(x, leak=0.2):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
@staticmethod
def relu(x):
return tf.nn.relu(x)
@staticmethod
def xxlu(x,label,name=None):
if label =='relu':
return Ops.relu(x)
if label =='lrelu':
return Ops.lrelu(x,leak=0.2)
@staticmethod
def variable_sum(var, name):
with tf.name_scope(name):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
@staticmethod
def variable_count():
total_para = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_para = 1
for dim in shape:
variable_para *= dim.value
total_para += variable_para
return total_para
@staticmethod
def fc(x, out_d, name):
xavier_init = tf.contrib.layers.xavier_initializer()
zero_init = tf.zeros_initializer()
in_d = x.get_shape()[1]
with tf.device('/cpu:0'): # to create Variables stored on CPU memory
w = tf.get_variable(name + '_w', [in_d, out_d], initializer=xavier_init)
b = tf.get_variable(name + '_b', [out_d], initializer=zero_init)
y = tf.nn.bias_add(tf.matmul(x, w), b)
Ops.variable_sum(w, name)
return y
@staticmethod
def conv2d(x, k=(1,1), out_c=1, str=1, name='',pad='SAME'):
xavier_init = tf.contrib.layers.xavier_initializer()
zero_init = tf.zeros_initializer()
in_c = x.get_shape()[3]
with tf.device('/cpu:0'): # to create Variables stored on CPU memory
w = tf.get_variable(name + '_w', [k[0], k[1], in_c, out_c], initializer=xavier_init)
b = tf.get_variable(name + '_b', [out_c], initializer=zero_init)
stride = [1, str, str, 1]
y = tf.nn.bias_add(tf.nn.conv2d(x, w, stride, pad), b)
Ops.variable_sum(w, name)
return y
@staticmethod
def dropout(x, is_train, keep_prob, name):
y = tf.cond(is_train, lambda: tf.nn.dropout(x, keep_prob=keep_prob, name=name), lambda: x)
return y
####################################
@staticmethod
def gather_tensor_along_2nd_axis(bat_bb_pred, bat_bb_indices):
bat_size = tf.shape(bat_bb_pred)[0]
[_, ins_max_num, d1, d2] = bat_bb_pred.get_shape()
bat_size_range = tf.range(bat_size)
bat_size_range_flat = tf.reshape(bat_size_range, [-1,1])
bat_size_range_flat_repeat = tf.tile(bat_size_range_flat, [1, int(ins_max_num)])
bat_size_range_flat_repeat = tf.reshape(bat_size_range_flat_repeat, [-1])
indices_2d_flat = tf.reshape(bat_bb_indices, [-1])
indices_2d_flat_repeat = bat_size_range_flat_repeat*int(ins_max_num) + indices_2d_flat
bat_bb_pred = tf.reshape(bat_bb_pred, [-1, int(d1), int(d2)])
bat_bb_pred_new = tf.gather(bat_bb_pred, indices_2d_flat_repeat)
bat_bb_pred_new = tf.reshape(bat_bb_pred_new, [bat_size, int(ins_max_num), int(d1), int(d2)])
return bat_bb_pred_new
@staticmethod
def hungarian(loss_matrix, bb_gt):
box_mask = np.array([[0, 0, 0], [0, 0, 0]])
def assign_mappings_valid_only(cost, gt_boxes):
# return ordering : batch_size x num_instances
loss_total = 0.
batch_size, num_instances = cost.shape[:2]
ordering = np.zeros(shape=[batch_size, num_instances]).astype(np.int32)
for idx in range(batch_size):
ins_gt_boxes = gt_boxes[idx]
ins_count = 0
for box in ins_gt_boxes:
if np.array_equal(box, box_mask):
break
else:
ins_count += 1
valid_cost = cost[idx][:ins_count]
row_ind, col_ind = linear_sum_assignment(valid_cost)
unmapped = num_instances - ins_count
if unmapped > 0:
rest = np.array(range(ins_count, num_instances))
row_ind = np.concatenate([row_ind, rest])
unmapped_ind = np.array(list(set(range(num_instances)) - set(col_ind)))
col_ind = np.concatenate([col_ind, unmapped_ind])
loss_total += cost[idx][row_ind, col_ind].sum()
ordering[idx] = np.reshape(col_ind, [1, -1])
return ordering, (loss_total / float(batch_size * num_instances)).astype(np.float32)
######
ordering, loss_total = tf.py_func(assign_mappings_valid_only, [loss_matrix, bb_gt], [tf.int32, tf.float32])
return ordering, loss_total
@staticmethod
def bbvert_association(X_pc, y_bbvert_pred, Y_bbvert, label=''):
points_num = tf.shape(X_pc)[1]
bbnum = int(y_bbvert_pred.shape[1])
points_xyz = X_pc[:, :, 0:3]
points_xyz = tf.tile(points_xyz[:, None, :, :], [1, bbnum, 1, 1])
##### get points hard mask in each gt bbox
gt_bbox_min_xyz = Y_bbvert[:, :, 0, :]
gt_bbox_max_xyz = Y_bbvert[:, :, 1, :]
gt_bbox_min_xyz = tf.tile(gt_bbox_min_xyz[:, :, None, :], [1, 1, points_num, 1])
gt_bbox_max_xyz = tf.tile(gt_bbox_max_xyz[:, :, None, :], [1, 1, points_num, 1])
tp1_gt = gt_bbox_min_xyz - points_xyz
tp2_gt = points_xyz - gt_bbox_max_xyz
tp_gt = tp1_gt * tp2_gt
points_in_gt_bbox_prob = tf.cast(tf.equal(tf.reduce_mean(tf.cast(tf.greater_equal(tp_gt, 0.), tf.float32), axis=-1), 1.0), tf.float32)
##### get points soft mask in each pred bbox ---> Algorithm 1
pred_bbox_min_xyz = y_bbvert_pred[:, :, 0, :]
pred_bbox_max_xyz = y_bbvert_pred[:, :, 1, :]
pred_bbox_min_xyz = tf.tile(pred_bbox_min_xyz[:, :, None, :], [1, 1, points_num, 1])
pred_bbox_max_xyz = tf.tile(pred_bbox_max_xyz[:, :, None, :], [1, 1, points_num, 1])
tp1_pred = pred_bbox_min_xyz - points_xyz
tp2_pred = points_xyz - pred_bbox_max_xyz
tp_pred = 100 * tp1_pred * tp2_pred
tp_pred = tf.maximum(tf.minimum(tp_pred, 20.0), -20.0)
points_in_pred_bbox_prob = 1.0/(1.0 + tf.exp(-1.0 * tp_pred))
points_in_pred_bbox_prob = tf.reduce_min(points_in_pred_bbox_prob, axis=-1)
##### get bbox cross entropy scores
prob_gt = tf.tile(points_in_gt_bbox_prob[:, :, None, :], [1, 1, bbnum, 1])
prob_pred = tf.tile(points_in_pred_bbox_prob[:, None, :, :], [1, bbnum, 1, 1])
ce_scores_matrix = - prob_gt * tf.log(prob_pred + 1e-8) - (1 - prob_gt) * tf.log(1 - prob_pred + 1e-8)
ce_scores_matrix = tf.reduce_mean(ce_scores_matrix, axis=-1)
##### get bbox soft IOU
TP = tf.reduce_sum(prob_gt * prob_pred, axis=-1)
FP = tf.reduce_sum(prob_pred, axis=-1) - TP
FN = tf.reduce_sum(prob_gt, axis=-1) - TP
iou_scores_matrix = TP/ (TP + FP + FN + 1e-6)
# iou_scores_matrix = 1.0/iou_scores_matrix # bad, don't use
iou_scores_matrix = -1.0 * iou_scores_matrix # to minimize
##### get bbox l2 scores
l2_gt = tf.tile(Y_bbvert[:, :, None, :, :], [1, 1, bbnum, 1, 1])
l2_pred = tf.tile(y_bbvert_pred[:, None, :, :, :], [1, bbnum, 1, 1, 1])
l2_gt = tf.reshape(l2_gt, [-1, bbnum, bbnum, 2 * 3])
l2_pred = tf.reshape(l2_pred, [-1, bbnum, bbnum, 2 * 3])
l2_scores_matrix = tf.reduce_mean((l2_gt - l2_pred) ** 2, reduction_indices=[-1])
##### bbox association
if label == 'use_all_ce_l2_iou':
associate_maxtrix = ce_scores_matrix + l2_scores_matrix + iou_scores_matrix
elif label == 'use_both_ce_l2':
associate_maxtrix = ce_scores_matrix + l2_scores_matrix
elif label == 'use_both_ce_iou':
associate_maxtrix = ce_scores_matrix + iou_scores_matrix
elif label == 'use_both_l2_iou':
associate_maxtrix = l2_scores_matrix + iou_scores_matrix
elif label == 'use_only_ce':
associate_maxtrix = ce_scores_matrix
elif label == 'use_only_l2':
associate_maxtrix = l2_scores_matrix
elif label == 'use_only_iou':
associate_maxtrix = iou_scores_matrix
else:
associate_maxtrix=None
print('association label error!'); exit()
######
pred_bborder, association_score_min = Ops.hungarian(associate_maxtrix, bb_gt=Y_bbvert)
pred_bborder = tf.cast(pred_bborder, dtype=tf.int32)
y_bbvert_pred_new = Ops.gather_tensor_along_2nd_axis(y_bbvert_pred, pred_bborder)
return y_bbvert_pred_new, pred_bborder
@staticmethod
def bbscore_association(y_bbscore_pred_raw, pred_bborder):
y_bbscore_pred_raw = y_bbscore_pred_raw[:,:,None,None]
y_bbscore_pred_new = Ops.gather_tensor_along_2nd_axis(y_bbscore_pred_raw, pred_bborder)
y_bbscore_pred_new = tf.reshape(y_bbscore_pred_new, [-1, int(y_bbscore_pred_new.shape[1])])
return y_bbscore_pred_new
#################################### sem loss
@staticmethod
def get_loss_psem_ce(y_psem_logits, Y_psem):
psemce_loss = tf.nn.softmax_cross_entropy_with_logits(logits=y_psem_logits, labels=Y_psem)
psemce_loss = tf.reduce_mean(psemce_loss)
return psemce_loss
#################################### bbox loss
@staticmethod
def get_loss_bbvert(X_pc, y_bbvert_pred, Y_bbvert, label=''):
points_num = tf.shape(X_pc)[1]
bb_num = int(Y_bbvert.shape[1])
points_xyz = X_pc[:, :, 0:3]
points_xyz = tf.tile(points_xyz[:, None, :, :], [1, bb_num, 1, 1])
##### get points hard mask in each gt bbox
gt_bbox_min_xyz = Y_bbvert[:, :, 0, :]
gt_bbox_max_xyz = Y_bbvert[:, :, 1, :]
gt_bbox_min_xyz = tf.tile(gt_bbox_min_xyz[:, :, None, :], [1, 1, points_num, 1])
gt_bbox_max_xyz = tf.tile(gt_bbox_max_xyz[:, :, None, :], [1, 1, points_num, 1])
tp1_gt = gt_bbox_min_xyz - points_xyz
tp2_gt = points_xyz - gt_bbox_max_xyz
tp_gt = tp1_gt * tp2_gt
points_in_gt_bbox_prob = tf.cast(tf.equal(tf.reduce_mean(tf.cast(tf.greater_equal(tp_gt, 0.), tf.float32), axis=-1), 1.0), tf.float32)
##### get points soft mask in each pred bbox
pred_bbox_min_xyz = y_bbvert_pred[:, :, 0, :]
pred_bbox_max_xyz = y_bbvert_pred[:, :, 1, :]
pred_bbox_min_xyz = tf.tile(pred_bbox_min_xyz[:, :, None, :], [1, 1, points_num, 1])
pred_bbox_max_xyz = tf.tile(pred_bbox_max_xyz[:, :, None, :], [1, 1, points_num, 1])
tp1_pred = pred_bbox_min_xyz - points_xyz
tp2_pred = points_xyz - pred_bbox_max_xyz
tp_pred = 100*tp1_pred*tp2_pred
tp_pred = tf.maximum(tf.minimum(tp_pred, 20.0), -20.0)
points_in_pred_bbox_prob = 1.0/(1.0 + tf.exp(-1.0 * tp_pred))
points_in_pred_bbox_prob = tf.reduce_min(points_in_pred_bbox_prob, axis=-1)
##### helper -> the valid bbox (the gt boxes are zero-padded during data processing, pickup valid ones here)
Y_bbox_helper = tf.reduce_sum(tf.reshape(Y_bbvert, [-1, bb_num, 6]), axis=-1)
Y_bbox_helper = tf.cast(tf.greater(Y_bbox_helper, 0.), tf.float32)
##### 1. get ce loss of valid/positive bboxes, don't count the ce_loss of invalid/negative bboxes
Y_bbox_helper_tp1 = tf.tile(Y_bbox_helper[:, :, None], [1, 1, points_num])
bbox_loss_ce_all = -points_in_gt_bbox_prob * tf.log(points_in_pred_bbox_prob + 1e-8) \
-(1.-points_in_gt_bbox_prob)*tf.log(1.-points_in_pred_bbox_prob + 1e-8)
bbox_loss_ce_pos = tf.reduce_sum(bbox_loss_ce_all*Y_bbox_helper_tp1)/tf.reduce_sum(Y_bbox_helper_tp1)
bbox_loss_ce = bbox_loss_ce_pos
##### 2. get iou loss of valid/positive bboxes
TP = tf.reduce_sum(points_in_pred_bbox_prob * points_in_gt_bbox_prob, axis=-1)
FP = tf.reduce_sum(points_in_pred_bbox_prob, axis=-1) - TP
FN = tf.reduce_sum(points_in_gt_bbox_prob, axis=-1) - TP
bbox_loss_iou_all = TP/(TP + FP + FN + 1e-6)
bbox_loss_iou_all = -1.0*bbox_loss_iou_all
bbox_loss_iou_pos = tf.reduce_sum(bbox_loss_iou_all*Y_bbox_helper)/tf.reduce_sum(Y_bbox_helper)
bbox_loss_iou = bbox_loss_iou_pos
##### 3. get l2 loss of both valid/positive bboxes
bbox_loss_l2_all = (Y_bbvert - y_bbvert_pred)**2
bbox_loss_l2_all = tf.reduce_mean(tf.reshape(bbox_loss_l2_all, [-1, bb_num, 6]), axis=-1)
bbox_loss_l2_pos = tf.reduce_sum(bbox_loss_l2_all*Y_bbox_helper)/tf.reduce_sum(Y_bbox_helper)
## to minimize the 3D volumn of invalid/negative bboxes, it serves as a regularizer to penalize false pred bboxes
## it turns out to be quite helpful, but not discussed in the paper
bbox_pred_neg = tf.tile((1.- Y_bbox_helper)[:,:,None,None], [1,1,2,3])*y_bbvert_pred
bbox_loss_l2_neg = (bbox_pred_neg[:,:,0,:]-bbox_pred_neg[:,:,1,:])**2
bbox_loss_l2_neg = tf.reduce_sum(bbox_loss_l2_neg)/(tf.reduce_sum(1.-Y_bbox_helper)+1e-8)
bbox_loss_l2 = bbox_loss_l2_pos + bbox_loss_l2_neg
#####
if label == 'use_all_ce_l2_iou':
bbox_loss = bbox_loss_ce + bbox_loss_l2 + bbox_loss_iou
elif label == 'use_both_ce_l2':
bbox_loss = bbox_loss_ce + bbox_loss_l2
elif label == 'use_both_ce_iou':
bbox_loss = bbox_loss_ce + bbox_loss_iou
elif label == 'use_both_l2_iou':
bbox_loss = bbox_loss_l2 + bbox_loss_iou
elif label == 'use_only_ce':
bbox_loss = bbox_loss_ce
elif label == 'use_only_l2':
bbox_loss = bbox_loss_l2
elif label == 'use_only_iou':
bbox_loss = bbox_loss_iou
else:
bbox_loss = None
print('bbox loss label error!'); exit()
return bbox_loss, bbox_loss_l2, bbox_loss_ce, bbox_loss_iou
@staticmethod
def get_loss_bbscore(y_bbscore_pred, Y_bbvert):
bb_num = int(Y_bbvert.shape[1])
##### helper -> the valid bbox
Y_bbox_helper = tf.reduce_sum(tf.reshape(Y_bbvert, [-1, bb_num, 6]), axis=-1)
Y_bbox_helper = tf.cast(tf.greater(Y_bbox_helper, 0.), tf.float32)
##### bbox score loss
bbox_loss_score = tf.reduce_mean(-Y_bbox_helper * tf.log(y_bbscore_pred + 1e-8)
-(1. - Y_bbox_helper) * tf.log(1. - y_bbscore_pred + 1e-8))
return bbox_loss_score
#################################### pmask loss
@staticmethod
def get_loss_pmask(X_pc, y_pmask_pred, Y_pmask):
points_num = tf.shape(X_pc)[1]
##### valid ins
Y_pmask_helper = tf.reduce_sum(Y_pmask, axis=-1)
Y_pmask_helper = tf.cast(tf.greater(Y_pmask_helper, 0.), tf.float32)
Y_pmask_helper = tf.tile(Y_pmask_helper[:, :, None], [1, 1, points_num])
Y_pmask = Y_pmask * Y_pmask_helper
y_pmask_pred = y_pmask_pred * Y_pmask_helper
##### focal loss
alpha = 0.75
gamma = 2
pmask_loss_focal_all = -Y_pmask*alpha*((1.-y_pmask_pred)**gamma)*tf.log(y_pmask_pred+1e-8)\
-(1.-Y_pmask)*(1.-alpha)*(y_pmask_pred**gamma)*tf.log(1.-y_pmask_pred+1e-8)
pmask_loss_focal = tf.reduce_sum(pmask_loss_focal_all*Y_pmask_helper)/tf.reduce_sum(Y_pmask_helper)
## the above "alpha" makes the loss to be small
## then use a constant, so it's numerically comparable with other losses (e.g., semantic loss, bbox loss)
pmask_loss = 30*pmask_loss_focal
return pmask_loss