-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_modvege.py
165 lines (136 loc) · 5.37 KB
/
run_modvege.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin env python3
# Mod Vege main code, had to rewrite most of the functions as the Java code was a complete mess
# This code runs a single geographical "Cell" (as the Java code was trying to do on a grid)
# This function *should* be self sustaining, nothing else needed.
import numpy as np
#Import the model function
from modvege import *
# Import ModVege read input files library:
# params.csv
# weather.csv
from lib_read_input_files import *
# ONLY FOR DEV
from lib_read_output_files import *
# Define the name of the input params file
input_params_csv='params.csv'
# Define the name of the input environment file
input_weather_csv='weather.csv'
def run_modvege(input_params_csv, input_weather_csv):
"""
Pre-Process the inputs to run Mod Vege model as a function
:param input_params_csv: Filename of the csv input parameters
:param input_weather_csv: Filename of the csv input weather file
"""
# Read Parameter files into array
params = read_params(input_params_csv)
# Read weather file into array
# arr[0][0] = DOY[0] = 1
# arr[0][1] = Temperature[0] = -0.84125
# arr[0][2] = PARi[0] = 2.22092475
# arr[0][3] = PP[0] = 0.119
# arr[0][4] = PET[0] = 0.602689848
# arr[0][5] = ETA[0] = 0.301344 # RS simulated
# arr[0][6] = LAI[0] = 0.864162 # RS simulated
# arr[0][7] = gcut_height[0] = 0.0 [default is 0.05 if cut]
# arr[0][8] = grazing_animal_count[0] = 0 [default is 1 for test ]
# arr[0][9] = grazing_avg_animal_weight[0] = 0 [ default is 400 for cow ]
weather = read_weather(input_weather_csv)
# ONLY FOR DEV
out = read_out(out_csv)
startdoy = 1
enddoy = 365
# Initialize the run and return arrays
gv_b, dv_b, gr_b, dr_b, h_b, i_b, gro, abc, sumT, gva, gra, dva, dra, sea, ftm, env, pgr, atr = modvege(params, weather, startdoy, enddoy)
# Print the output
#print(output)
################################################ ###################
# Definition of columns in out_cut.csv Eq. from output run
################################################ ###################
# 0 day
# 1 Mean biomass (kg DM/ha) gv_b+gr_b+dv_b+dr_b
# 2 Mean green vegetative biomass (kg DM/ha) gv_b
# 3 Mean green reproductive biomass (kg DM/ha) gr_b
# 4 Mean dry vegetative biomass (kg DM/ha) dv_b
# 5 Mean dry reproductive biomass (kg DM/ha) dr_b
# 6 Harvested Biomass (kg DM/ha) h_b
# 7 Ingested Biomass (kg DM/ha) i_b
# 8 Mean GRO biomass (kg DM/ha) gro
# 9 Mean available biomass for cut (kg DM/ha) abc
#PLOT
out_doy = [out[i][0] for i in range(len(out)-1) ]
out_gvb = [out[i][2] for i in range(len(out)-1) ]
out_grb = [out[i][3] for i in range(len(out)-1) ]
out_dvb = [out[i][4] for i in range(len(out)-1) ]
out_drb = [out[i][5] for i in range(len(out)-1) ]
out_hb = [out[i][6] for i in range(len(out)-1) ]
out_ib = [out[i][7] for i in range(len(out)-1) ]
out_gro = [out[i][8] for i in range(len(out)-1) ]
out_abc = [out[i][9] for i in range(len(out)-1) ]
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(15,7))
plt.subplot(331)
plt.plot(out_doy,gv_b,'g-',label="gv_b")
plt.plot(out_doy,out_gvb,'b-',label="out_gvb")
plt.title('Green Vegetative biomass (kg DM/ha)')
plt.legend()
plt.grid()
plt.subplot(332)
plt.plot(out_doy,gr_b,'g-',label="gr_b")
plt.plot(out_doy,out_grb,'b-',label="out_grb")
plt.title('Green Reproductive biomass (kg DM/ha)')
plt.legend()
plt.grid()
plt.subplot(333)
plt.plot(out_doy,sumT,'g-',label="sumT")
plt.plot(out_doy,gva,'b-',label="gv_age")
plt.plot(out_doy,gra,'y-',label="gr_age")
plt.plot(out_doy,dva,'c-',label="dv_age")
plt.plot(out_doy,dra,'r-',label="dr_age")
plt.title('Sum of Temperature (Celsius)')
plt.legend()
plt.grid()
plt.subplot(334)
plt.plot(out_doy,dv_b,'g-',label="dv_b")
plt.plot(out_doy,out_dvb,'b-',label="out_dvb")
plt.title('Dead Vegetative biomass (kg DM/ha)')
plt.legend()
plt.grid()
plt.subplot(335)
plt.plot(out_doy,dr_b,'g-',label="dr_b")
plt.plot(out_doy,out_drb,'b-',label="out_drb")
plt.title('Dead Reproductive biomass (kg DM/ha)')
plt.legend()
plt.grid()
plt.subplot(336)
plt.plot(out_doy,pgr,'m-',label="Pot. Growth")
plt.plot(out_doy,gro,'g-',label="gro")
plt.plot(out_doy,out_gro,'b-',label="out_gro")
plt.title('GRO biomass (kg DM/ha)')
plt.legend()
plt.grid()
plt.subplot(337)
plt.plot(out_doy,abc,'g-',label="abc")
plt.plot(out_doy,out_abc,'b-',label="out_abc")
plt.title('Mean available biomass for cut (kg DM/ha)')
plt.legend()
plt.grid()
# Harvested Biomass Plot
plt.subplot(338)
plt.plot(out_doy,h_b,'g-',label="h_b")
plt.plot(out_doy,out_hb,'b-',label="out_hb")
plt.title('Harvested biomass (kg DM/ha)')
plt.legend()
plt.grid()
plt.subplot(339)
plt.plot(out_doy,atr,'c-',label="a2r")
plt.plot(out_doy,sea,'g-',label="Season")
plt.plot(out_doy,ftm,'r-',label="Temperature")
plt.plot(out_doy,env,'y-',label="Environmental")
plt.title('ENV and other Factors')
plt.legend()
plt.grid()
plt.tight_layout()
plt.show()
# run the main function
run_modvege(input_params_csv, input_weather_csv)