Skip to content

Latest commit

 

History

History
36 lines (26 loc) · 1.37 KB

README.md

File metadata and controls

36 lines (26 loc) · 1.37 KB

🚗 comma10k-baseline

A semantic segmentation baseline using @comma.ai's comma10k dataset.

Using U-Net with efficientnet encoder, this baseline reaches 0.044 validation loss.

Visualize

Here is an example (randomly from the validation set, no cherry picking)

Ground truth

Ground truth

Predicted

Prediction

Info

The comma10k dataset is currently being labeled, stay tuned for:

  • A retrained model when the dataset is released
  • More features to use the model

How to use

This baseline uses two stages (i) 437x582 (ii) 874x1164 (full resolution)

python3 train_lit_model.py --backbone efficientnet-b4 --version first-stage --gpus 2 --batch-size 28 --epochs 100 --height 437 --width 582
python3 train_lit_model.py --backbone efficientnet-b4 --version second-stage --gpus 2 --batch-size 7 --learning-rate 5e-5 --epochs 30 --height 874 --width 1164 --augmentation-level hard --seed-from-checkpoint .../efficientnet-b4/first-stage/checkpoints/last.ckpt

WIP and ideas of contributions!

  • Update to pytorch lightning 1.0
  • Try more image augmentations
  • Pretrain on a larger driving dataset (make sure license is permissive)
  • Try over sampling images with small or far objects

Dependecies

Python 3.5+, pytorch 1.6+ and dependencies listed in requirements.txt.