-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcyclegan.py
320 lines (255 loc) · 12 KB
/
cyclegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import argparse
import os
import numpy as np
import math
import itertools
import datetime
import time
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
from PIL import Image
from models import Generator, Discriminator, init_weights_of_model
from dataset import ImageDataset
from utils import ReplayBuffer, LambdaLR
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="monet2photo", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_height", type=int, default=256, help="size of image height")
parser.add_argument("--img_width", type=int, default=256, help="size of image width")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator outputs")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints")
parser.add_argument("--n_residual_blocks", type=int, default=9, help="number of residual blocks in generator")
parser.add_argument("--lambda_cyc", type=float, default=10.0, help="cycle loss weight")
parser.add_argument("--lambda_id", type=float, default=5.0, help="identity loss weight")
parser.add_argument("--init_type", type=str, default='normal', choices=['normal', 'xavier', 'kaiming', 'orthogonal'], help="type of initialising weights")
parser.add_argument("--init_gain", type=float, default=0.02, help="epoch to start training from")
return parser.parse_args()
def need_to_save_model_checkpoints(checkpoint_interval, epoch):
return checkpoint_interval != -1 and epoch % checkpoint_interval == 0
def save_sample_images(batches_done, dataset_name):
"""
Saves a generated sample from the test set
"""
imgs = next(iter(val_dataloader))
G_AB.eval()
G_BA.eval()
real_A = Variable(imgs["A"].type(Tensor))
fake_B = G_AB(real_A)
real_B = Variable(imgs["B"].type(Tensor))
fake_A = G_BA(real_B)
# Arange images along x-axis
real_A = make_grid(real_A, nrow=5, normalize=True)
real_B = make_grid(real_B, nrow=5, normalize=True)
fake_A = make_grid(fake_A, nrow=5, normalize=True)
fake_B = make_grid(fake_B, nrow=5, normalize=True)
# Arange images along y-axis
image_grid = torch.cat((real_A, fake_B, real_B, fake_A), 1)
save_image(image_grid, "images/%s/%s.png" % (dataset_name, batches_done), normalize=False)
if __name__ == '__main__':
args = arg_parser()
# get argument values from the argument parser
dataset_name = args.dataset_name
n_residual_blocks = args.n_residual_blocks
epoch, n_epochs, decay_epoch = args.epoch, args.n_epochs, args.decay_epoch
init_type, init_gain = args.init_type, args.init_gain
lr = args.lr
b1, b2 = args.b1, args.b2
batch_size = args.batch_size
n_cpu = args.n_cpu
lambda_cyc, lambda_id = args.lambda_cyc, args.lambda_id
sample_interval, checkpoint_interval = args.sample_interval, args.checkpoint_interval
channels, img_height, img_width = args.channels, args.img_height, args.img_width
# Create sample and checkpoint directories
os.makedirs("images/%s" % dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % dataset_name, exist_ok=True)
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()
CUDA = torch.cuda.is_available()
# get the input shape
input_shape = (channels, img_height, img_width)
# Initialize generator and discriminator
G_AB = Generator(input_shape, n_residual_blocks)
G_BA = Generator(input_shape, n_residual_blocks)
D_A = Discriminator(input_shape)
D_B = Discriminator(input_shape)
if CUDA:
G_AB = G_AB.cuda()
G_BA = G_BA.cuda()
D_A = D_A.cuda()
D_B = D_B.cuda()
criterion_GAN.cuda()
criterion_cycle.cuda()
criterion_identity.cuda()
if epoch != 0:
# Load pretrained models
G_AB.load_state_dict(torch.load("saved_models/%s/G_AB_%d.pth" % (dataset_name, epoch)))
G_BA.load_state_dict(torch.load("saved_models/%s/G_BA_%d.pth" % (dataset_name, epoch)))
D_A.load_state_dict(torch.load("saved_models/%s/D_A_%d.pth" % (dataset_name, epoch)))
D_B.load_state_dict(torch.load("saved_models/%s/D_B_%d.pth" % (dataset_name, epoch)))
else:
# Initialize weights
init_weights_of_model(G_AB, init_type=init_type, init_gain=init_gain)
init_weights_of_model(G_BA, init_type=init_type, init_gain=init_gain)
init_weights_of_model(D_A, init_type=init_type, init_gain=init_gain)
init_weights_of_model(D_B, init_type=init_type, init_gain=init_gain)
# Optimizers
optimizer_G = torch.optim.Adam(itertools.chain(G_AB.parameters(), G_BA.parameters()), lr=lr, betas=(b1, b2))
optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=lr, betas=(b1, b2))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=lr, betas=(b1, b2))
# Learning rate update schedulers
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(
optimizer_G, lr_lambda=LambdaLR(n_epochs, epoch, decay_epoch).step
)
lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR(
optimizer_D_A, lr_lambda=LambdaLR(n_epochs, epoch, decay_epoch).step
)
lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR(
optimizer_D_B, lr_lambda=LambdaLR(n_epochs, epoch, decay_epoch).step
)
Tensor = torch.cuda.FloatTensor if CUDA else torch.Tensor
# Buffers of previously generated samples
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
# Image transformations
transforms_ = [
transforms.Resize(int(img_height * 1.12), Image.BICUBIC),
transforms.RandomCrop((img_height, img_width)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
target_dataset_name = "../../data/{}".format(dataset_name)
os.makedirs(target_dataset_name, exist_ok=True)
# Training data loader
dataloader = DataLoader(
ImageDataset(target_dataset_name, transforms_=transforms_, unaligned=True),
batch_size=batch_size,
shuffle=True,
num_workers=n_cpu,
)
# Test data loader
val_dataloader = DataLoader(
ImageDataset(target_dataset_name, transforms_=transforms_, unaligned=True, mode="test"),
batch_size=5,
shuffle=True,
num_workers=1,
)
# ----------
# Training
# ----------
prev_time = time.time()
for epoch in range(epoch, n_epochs):
for i, batch in enumerate(dataloader):
# Set model input
real_A = Variable(batch["A"].type(Tensor))
real_B = Variable(batch["B"].type(Tensor))
# Adversarial ground truths
valid = Variable(Tensor(np.ones((real_A.size(0), *D_A.output_shape))), requires_grad=False)
fake = Variable(Tensor(np.zeros((real_A.size(0), *D_A.output_shape))), requires_grad=False)
# ------------------
# Train Generators
# ------------------
G_AB.train()
G_BA.train()
optimizer_G.zero_grad()
# Identity loss
loss_id_A = criterion_identity(G_BA(real_A), real_A)
loss_id_B = criterion_identity(G_AB(real_B), real_B)
loss_identity = (loss_id_A + loss_id_B) / 2
# GAN loss
fake_B = G_AB(real_A)
loss_GAN_AB = criterion_GAN(D_B(fake_B), valid)
fake_A = G_BA(real_B)
loss_GAN_BA = criterion_GAN(D_A(fake_A), valid)
loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2
# Cycle loss
recov_A = G_BA(fake_B)
loss_cycle_A = criterion_cycle(recov_A, real_A)
recov_B = G_AB(fake_A)
loss_cycle_B = criterion_cycle(recov_B, real_B)
loss_cycle = (loss_cycle_A + loss_cycle_B) / 2
# Calculate the total loss
loss_G = loss_GAN + lambda_cyc * loss_cycle + lambda_id * loss_identity
loss_G.backward()
optimizer_G.step()
# -----------------------
# Train Discriminator A
# -----------------------
optimizer_D_A.zero_grad()
# Real loss
loss_real = criterion_GAN(D_A(real_A), valid)
# Fake loss (on batch of previously generated samples)
fake_A_ = fake_A_buffer.push_and_pop(fake_A)
loss_fake = criterion_GAN(D_A(fake_A_.detach()), fake)
# Total loss
loss_D_A = (loss_real + loss_fake) / 2
loss_D_A.backward()
optimizer_D_A.step()
# -----------------------
# Train Discriminator B
# -----------------------
optimizer_D_B.zero_grad()
# Real loss
loss_real = criterion_GAN(D_B(real_B), valid)
# Fake loss (on batch of previously generated samples)
fake_B_ = fake_B_buffer.push_and_pop(fake_B)
loss_fake = criterion_GAN(D_B(fake_B_.detach()), fake)
# Total loss
loss_D_B = (loss_real + loss_fake) / 2
loss_D_B.backward()
optimizer_D_B.step()
loss_D = (loss_D_A + loss_D_B) / 2
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
print(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, adv: %f, cycle: %f, identity: %f] ETA: %s"
% (
epoch,
n_epochs,
i,
len(dataloader),
loss_D.item(),
loss_G.item(),
loss_GAN.item(),
loss_cycle.item(),
loss_identity.item(),
time_left,
)
)
# If at sample interval save image
if batches_done % sample_interval == 0:
save_sample_images(batches_done, dataset_name)
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D_A.step()
lr_scheduler_D_B.step()
if need_to_save_model_checkpoints(checkpoint_interval, epoch):
# Save model checkpoints
torch.save(G_AB.state_dict(), "saved_models/%s/G_AB_%d.pth" % (dataset_name, epoch))
torch.save(G_BA.state_dict(), "saved_models/%s/G_BA_%d.pth" % (dataset_name, epoch))
torch.save(D_A.state_dict(), "saved_models/%s/D_A_%d.pth" % (dataset_name, epoch))
torch.save(D_B.state_dict(), "saved_models/%s/D_B_%d.pth" % (dataset_name, epoch))