-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean_mesh.py
326 lines (255 loc) · 11.9 KB
/
clean_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np
import cv2 as cv
import os
from glob import glob
from scipy.io import loadmat
import trimesh
import open3d as o3d
import torch
from tqdm import tqdm
import argparse
def read_cam_file(filename):
"""
Load camera file e.g., 00000000_cam.txt
"""
with open(filename) as f:
lines = [line.rstrip() for line in f.readlines()]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ')
extrinsics = extrinsics.reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ')
intrinsics = intrinsics.reshape((3, 3))
intrinsics_ = np.float32(np.diag([1, 1, 1, 1]))
intrinsics_[:3, :3] = intrinsics
P = intrinsics_ @ extrinsics
return P
def gen_rays_from_single_image(H, W, image, intrinsic, c2w, depth=None, mask=None):
"""
generate rays in world space, for image
:param H:
:param W:
:param intrinsics: [3,3]
:param c2ws: [4,4]
:return:
"""
device = image.device
ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
torch.linspace(0, W - 1, W))
p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1) # H, W, 3
# normalized ndc uv coordinates, (-1, 1)
ndc_u = 2 * xs / (W - 1) - 1
ndc_v = 2 * ys / (H - 1) - 1
rays_ndc_uv = torch.stack([ndc_u, ndc_v], dim=-1).view(-1, 2).float().to(device)
intrinsic_inv = torch.inverse(intrinsic)
p = p.view(-1, 3).float().to(device) # N_rays, 3
p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze() # N_rays, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # N_rays, 3
rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze() # N_rays, 3
rays_o = c2w[None, :3, 3].expand(rays_v.shape) # N_rays, 3
image = image.permute(1, 2, 0)
color = image.view(-1, 3)
depth = depth.view(-1, 1) if depth is not None else None
mask = mask.view(-1, 1) if mask is not None else torch.ones([H * W, 1]).to(device)
sample = {
'rays_o': rays_o,
'rays_v': rays_v,
'rays_ndc_uv': rays_ndc_uv,
'rays_color': color,
'rays_mask': mask,
'rays_norm_XYZ_cam': p # - XYZ_cam, before multiply depth
}
if depth is not None:
sample['rays_depth'] = depth
return sample
def load_K_Rt_from_P(filename, P=None):
if P is None:
lines = open(filename).read().splitlines()
if len(lines) == 4:
lines = lines[1:]
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
P = np.asarray(lines).astype(np.float32).squeeze()
out = cv.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K / K[2, 2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose()
pose[:3, 3] = (t[:3] / t[3])[:, 0]
return intrinsics, pose # ! return cam2world matrix here
def clean_points_by_mask(args, points, scan, imgs_idx=None, minimal_vis=0, mask_dilated_size=11):
cameras=[]
mask_lis=[]
view_idx = list(range(len(imgs_idx)))
for vid in imgs_idx:
proj_mat_filename = os.path.join(args.root_dir, 'cameras/{:0>8}_cam.txt'.format(vid))
P = read_cam_file(proj_mat_filename)
cameras.append(P)
mask_filename = os.path.join(args.root_dir, 'scan{}/mask/{:0>3}.png'.format(scan, vid))
mask_lis.append(mask_filename)
inside_mask = np.zeros(len(points))
# if imgs_idx is None:
# imgs_idx = [i for i in range(n_images)]
# imgs_idx = [i for i in range(n_images)]
for i in view_idx:
P = cameras[i]
pts_image = np.matmul(P[None, :3, :3], points[:, :, None]).squeeze() + P[None, :3, 3]
pts_image = pts_image / pts_image[:, 2:]
pts_image = np.round(pts_image).astype(np.int32) + 1
mask_image = cv.imread(mask_lis[i])
kernel_size = mask_dilated_size # default 101
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (kernel_size, kernel_size))
mask_image = cv.dilate(mask_image, kernel, iterations=1)
mask_image = (mask_image[:, :, 0] > 128)
mask_image = np.concatenate([np.ones([1, 1600]), mask_image, np.ones([1, 1600])], axis=0)
mask_image = np.concatenate([np.ones([1202, 1]), mask_image, np.ones([1202, 1])], axis=1)
in_mask = (pts_image[:, 0] >= 0) * (pts_image[:, 0] <= 1600) * (pts_image[:, 1] >= 0) * (
pts_image[:, 1] <= 1200) > 0
curr_mask = mask_image[(pts_image[:, 1].clip(0, 1201), pts_image[:, 0].clip(0, 1601))]
curr_mask = curr_mask.astype(np.float32) * in_mask
inside_mask += curr_mask
return inside_mask > minimal_vis
def clean_mesh_faces_by_mask(args, mesh_file, new_mesh_file, scan, imgs_idx, minimal_vis=0, mask_dilated_size=11):
old_mesh = trimesh.load(mesh_file)
old_vertices = old_mesh.vertices[:]
old_faces = old_mesh.faces[:]
mask = clean_points_by_mask(args, old_vertices, scan, imgs_idx, minimal_vis, mask_dilated_size)
indexes = np.ones(len(old_vertices)) * -1
indexes = indexes.astype(np.long)
indexes[np.where(mask)] = np.arange(len(np.where(mask)[0]))
faces_mask = mask[old_faces[:, 0]] & mask[old_faces[:, 1]] & mask[old_faces[:, 2]]
new_faces = old_faces[np.where(faces_mask)]
new_faces[:, 0] = indexes[new_faces[:, 0]]
new_faces[:, 1] = indexes[new_faces[:, 1]]
new_faces[:, 2] = indexes[new_faces[:, 2]]
new_vertices = old_vertices[np.where(mask)]
new_mesh = trimesh.Trimesh(new_vertices, new_faces)
new_mesh.export(new_mesh_file)
def clean_mesh_by_faces_num(mesh, faces_num=500):
old_vertices = mesh.vertices[:]
old_faces = mesh.faces[:]
cc = trimesh.graph.connected_components(mesh.face_adjacency, min_len=faces_num)
mask = np.zeros(len(mesh.faces), dtype=np.bool)
mask[np.concatenate(cc)] = True
indexes = np.ones(len(old_vertices)) * -1
indexes = indexes.astype(np.long)
indexes[np.where(mask)] = np.arange(len(np.where(mask)[0]))
faces_mask = mask[old_faces[:, 0]] & mask[old_faces[:, 1]] & mask[old_faces[:, 2]]
new_faces = old_faces[np.where(faces_mask)]
new_faces[:, 0] = indexes[new_faces[:, 0]]
new_faces[:, 1] = indexes[new_faces[:, 1]]
new_faces[:, 2] = indexes[new_faces[:, 2]]
new_vertices = old_vertices[np.where(mask)]
new_mesh = trimesh.Trimesh(new_vertices, new_faces)
return new_mesh
def clean_mesh_faces_outside_frustum(args, scan, old_mesh_file, new_mesh_file, imgs_idx, H=1200, W=1600, mask_dilated_size=11,
isolated_face_num=500, keep_largest=True):
'''Remove faces of mesh which cannot be orserved by all cameras
'''
cameras=[]
mask_lis=[]
view_idx = list(range(len(imgs_idx)))
for vid in imgs_idx:
proj_mat_filename = os.path.join(args.root_dir, 'cameras/{:0>8}_cam.txt'.format(vid))
P = read_cam_file(proj_mat_filename)
cameras.append(P)
mask_filename = os.path.join(args.root_dir, 'scan{}/mask/{:0>3}.png'.format(scan, vid))
mask_lis.append(mask_filename)
mesh = trimesh.load(old_mesh_file)
intersector = trimesh.ray.ray_pyembree.RayMeshIntersector(mesh)
all_indices = []
chunk_size = 5120
for i in view_idx:
mask_image = cv.imread(mask_lis[i])
kernel_size = mask_dilated_size # default 101
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (kernel_size, kernel_size))
mask_image = cv.dilate(mask_image, kernel, iterations=1)
P = cameras[i]
intrinsic, pose = load_K_Rt_from_P(None, P[:3, :])
rays = gen_rays_from_single_image(H, W, torch.from_numpy(mask_image).permute(2, 0, 1).float(),
torch.from_numpy(intrinsic)[:3, :3].float(),
torch.from_numpy(pose).float())
rays_o = rays['rays_o']
rays_d = rays['rays_v']
rays_mask = rays['rays_color']
rays_o = rays_o.split(chunk_size)
rays_d = rays_d.split(chunk_size)
rays_mask = rays_mask.split(chunk_size)
for rays_o_batch, rays_d_batch, rays_mask_batch in tqdm(zip(rays_o, rays_d, rays_mask)):
rays_mask_batch = rays_mask_batch[:, 0] > 128
rays_o_batch = rays_o_batch[rays_mask_batch]
rays_d_batch = rays_d_batch[rays_mask_batch]
idx_faces_hits = intersector.intersects_first(rays_o_batch.cpu().numpy(), rays_d_batch.cpu().numpy())
all_indices.append(idx_faces_hits)
values = np.unique(np.concatenate(all_indices, axis=0))
mask_faces = np.ones(len(mesh.faces))
mask_faces[values[1:]] = 0
print(f'Surfaces/Kept: {len(mesh.faces)}/{len(values)}')
mesh_o3d = o3d.io.read_triangle_mesh(old_mesh_file)
print("removing triangles by mask")
mesh_o3d.remove_triangles_by_mask(mask_faces)
o3d.io.write_triangle_mesh(new_mesh_file, mesh_o3d)
# # clean meshes
new_mesh = trimesh.load(new_mesh_file)
cc = trimesh.graph.connected_components(new_mesh.face_adjacency, min_len=500)
mask = np.zeros(len(new_mesh.faces), dtype=np.bool)
mask[np.concatenate(cc)] = True
new_mesh.update_faces(mask)
new_mesh.remove_unreferenced_vertices()
new_mesh.export(new_mesh_file)
# meshes = new_mesh.split(only_watertight=False)
#
# if not keep_largest:
# meshes = [mesh for mesh in meshes if len(mesh.faces) > isolated_face_num]
# # new_mesh = meshes[np.argmax([len(mesh.faces) for mesh in meshes])]
# merged_mesh = trimesh.util.concatenate(meshes)
# merged_mesh.export(new_mesh_file)
# else:
# new_mesh = meshes[np.argmax([len(mesh.faces) for mesh in meshes])]
# new_mesh.export(new_mesh_file)
o3d.io.write_triangle_mesh(new_mesh_file.replace(".ply", "_raw.ply"), mesh_o3d)
print("finishing removing triangles")
def clean_outliers(old_mesh_file, new_mesh_file):
new_mesh = trimesh.load(old_mesh_file)
meshes = new_mesh.split(only_watertight=False)
new_mesh = meshes[np.argmax([len(mesh.faces) for mesh in meshes])]
new_mesh.export(new_mesh_file)
if __name__ == "__main__":
# -------------------------------- args
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', dest='root_dir', type=str, default='./DTU_TEST',
help='dataset')
parser.add_argument('--out_dir', dest='out_dir', type=str, default='./outputs/mesh',
help='directory of to save test result')
parser.add_argument('--n_view', dest='n_view', type=int, default=3)
parser.add_argument('--set', dest='set', type=int, default=0)
parser.add_argument('--scan', type=int, default=None)
args = parser.parse_args()
if args.scan:
scans = [args.scan]
else:
scans = [24, 37, 40, 55, 63, 65, 69, 83, 97, 105, 106, 110, 114, 118, 122]
mask_kernel_size = 11 #49
if args.set==0:
view_list = [23, 24, 33, 22, 15, 34, 14, 32, 16, 35, 25]
elif args.set==1:
view_list = [43, 42, 44, 33, 34, 32, 45, 23, 41, 24, 31]
else:
view_list = list(range(49))
if args.n_view > 49:
args.n_view = 49
imgs_idx = view_list[:args.n_view]
# base_path = "./outputs"
os.makedirs(os.path.join(args.out_dir, "final"), exist_ok=True)
for scan in scans:
print("processing scan%d" % scan)
old_mesh_file = glob(os.path.join(args.out_dir, "*scan%d.ply"%scan))[0]
clean_mesh_file = os.path.join(args.out_dir, "final", "clean_%03d.ply" % scan)
final_mesh_file = os.path.join(args.out_dir, "final", "scan%d.ply" % scan)
clean_mesh_faces_by_mask(args, old_mesh_file, clean_mesh_file, scan, imgs_idx, minimal_vis=1,
mask_dilated_size=mask_kernel_size)
clean_mesh_faces_outside_frustum(args, scan, clean_mesh_file, final_mesh_file, imgs_idx, mask_dilated_size=mask_kernel_size)
print("finish processing scan%d" % scan)