-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFinal_SVM.py
665 lines (421 loc) · 20.9 KB
/
Final_SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 2 14:37:25 2018
@author: yizihuang
"""
import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import RandomOverSampler
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.metrics import roc_curve, auc
from sklearn import preprocessing
from sklearn.naive_bayes import GaussianNB
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest, chi2
import random
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.ensemble import BaggingClassifier
from tabulate import tabulate
from math import sqrt
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.metrics import roc_curve, auc
from sklearn import metrics
from sklearn.metrics import mean_squared_error
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.calibration import CalibratedClassifierCV
import math
from math import sqrt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from sklearn.svm import SVC
import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import RandomOverSampler
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.metrics import roc_curve, auc
from sklearn import preprocessing
from sklearn.naive_bayes import GaussianNB
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest, chi2
import random
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.ensemble import BaggingClassifier
from tabulate import tabulate
from math import sqrt
def performance_DT1(X_train,y_train,X_test,y_test):
Sensitivity_train_list=[]
Specificity_train_list=[]
Sensitivity_test_list=[]
Specificity_test_list=[]
seed= random.sample(range(100),20)
for i in seed:
clf_gini = DecisionTreeClassifier(criterion = "gini", random_state = i , max_depth=20, min_samples_split=10, min_samples_leaf= 5)
clf_gini.fit(X_train, y_train)
y_train_pred_gini = clf_gini.predict(X_train)
y_pred_gini = clf_gini.predict(X_test)
## Train
tn1, fp1, fn1, tp1 = confusion_matrix(y_train, y_train_pred_gini).ravel()
Sensitivity_train = tp1/(tp1+fn1)
Specificity_train = tn1/(tn1+fp1)
Sensitivity_train_list.append(Sensitivity_train)
Specificity_train_list.append(Specificity_train)
## Test
tn2, fp2, fn2, tp2 = confusion_matrix(y_test, y_pred_gini).ravel()
Sensitivity_test = tp2/(tp2+fn2)
Specificity_test = tn2/(tn2+fp2)
Sensitivity_test_list.append(Sensitivity_test)
Specificity_test_list.append(Specificity_test)
print("Sensitivity_train:" +str(sum(Sensitivity_train_list)/len(Sensitivity_train_list)))
print("Specificity_train:" +str(sum(Specificity_train_list)/len(Specificity_train_list)))
print("Sensitivity_test:" +str(sum(Sensitivity_test_list)/len(Sensitivity_test_list)))
print("Specificity_test:" +str(sum(Specificity_test_list)/len(Specificity_test_list)))
os.getcwd()
os.chdir("/Users/yizihuang/Documents/CSC540/Final Project")
data=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
X = data.drop(columns="Attrition")
y = data["Attrition"]
y.value_counts().plot(kind="bar")
plt.title("Class Distribution", fontsize=17)
plt.xlabel(" Type of status", fontsize=13)
plt.ylabel("Count",fontsize=13)
data1= data.copy()
cleanup_nums = {
"BusinessTravel": {"Non-Travel":1, "Travel_Rarely" :2,"Travel_Frequently":3},
"Department": {"Research & Development":1,"Sales":2,"Human Resources":3},
"EducationField": {"Life Sciences":1,"Medical":2,"Marketing":3,"Technical Degree":4,"Human Resources":5,"Other":6},
"Gender": {"Male":1,"Female":2},
"JobRole": {"Sales Executive":1,"Research Scientist":2, "Laboratory Technician":3,"Manufacturing Director":4,"Healthcare Representative":5,"Manager":6,"Sales Representative":7,"Research Director":8,"Human Resources":9},
"MaritalStatus": {"Single":1, "Married":2, "Divorced":3},
"OverTime": {"No":1,"Yes":2},
"Attrition" :{"No":0,"Yes":1}
}
ax = sns.violinplot(x="Gender", y="YearsSinceLastPromotion", hue="Attrition",data=data, palette="Set2", split=True,scale="count", inner="quartile")
ax = sns.violinplot(x="Gender", y="YearsSinceLastPromotion", hue="Attrition",data=data_new, palette="Set2", split=True,scale="count", inner="quartile")
## Check the missing value
data1.info()
data1.isnull().values.any()
data1.describe()
## Check the distribution of classes : bar graph, volin plot,
## Confusion Matrix : Plot a correlation map for all numeric variables
f,ax = plt.subplots(figsize=(18, 18))
sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)
plt.show()
#### split numeric + categorical
numercic_data= data1.select_dtypes(exclude=['object'])
categorical_data= data1.select_dtypes(include=['object'])
reorder_categorical_data = pd.concat([categorical_data.iloc[:,1:],categorical_data["Attrition"]],axis=1)
data_new= pd.concat([numercic_data,reorder_categorical_data],axis=1)
data_new.replace(cleanup_nums, inplace=True)
numeric_data_norm= preprocessing.normalize(data_new.iloc[:,:24])
numeric_data_norm=pd.DataFrame(numeric_data_norm)
numeric_data_norm.columns=data_new.iloc[:,:24].columns
numer_cate_data=pd.concat([numeric_data_norm,data_new.iloc[:,24:]],axis=1)
X = data_new.drop(columns="Attrition")
#lb = preprocessing.LabelBinarizer()
#y = lb.fit_transform(data_new['Attrition'])
y=data_new['Attrition']
X_split = numer_cate_data.iloc[:,:-1]
y_split = numer_cate_data.iloc[:,-1]
## Oversampling X_train_over = 1974
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,random_state=12)
ros = RandomOverSampler(random_state=12)
X_train_over, y_train_over = ros.fit_sample(X_train, y_train)
pd.Series(y_train_over).value_counts().plot(kind="bar")
plt.title("Class Distribution: After Oversampling", fontsize=17)
plt.xlabel(" Type of status", fontsize=13)
plt.ylabel("Count",fontsize=13)
## Under sampling X_train_under= 378
res = RandomUnderSampler(random_state=12)
X_train_under, y_train_under = res.fit_sample(X_train, y_train)
pd.Series(y_train_under).value_counts().plot(kind="bar")
plt.title("Class Distribution: After Undersampling", fontsize=17)
plt.xlabel(" Type of status", fontsize=13)
plt.ylabel("Count",fontsize=13)
## Normalize
X_norm = numer_cate_data.iloc[:,:-1]
y = numer_cate_data.iloc[:,-1]
X_train_norm, X_test_norm, y_train_norm, y_test_norm = train_test_split(X_norm, y, test_size = 0.2,random_state=12)
"""
data_X_norm = preprocessing.normalize(data_new.drop(columns="Attrition"))
data_X_norm= pd.DataFrame(data_X_norm )
data_norm= pd.concat([data_X_norm,data_new['Attrition']], axis=1)
X_norm=data_norm.iloc[:,:-1]
y=data_norm.iloc[:,-1]"""
## Normalize + Oversampling
X_train_norm_over, y_train_norm_over= ros.fit_sample(X_train_norm, y_train_norm)
## Normalize +undersampling
X_train_norm_under, y_train_norm_under = res.fit_sample(X_train_norm, y_train_norm)
## Oversampling + Normalize len(X_train_d)=1974
X_train_over, y_train_over = ros.fit_sample(X_train, y_train)
X_train_over_d=pd.DataFrame(X_train_over)
X_test.columns=list(range(0,31))
X_over = pd.concat([X_train_over_d, X_test],axis=0)
pre1=pd.DataFrame(preprocessing.normalize(X_over.iloc[:,:24]))
pre2=pd.DataFrame(preprocessing.normalize(X_over.iloc[:,24:]))
X_over_norm = pd.concat([pre1,pre2],axis=1)
X_train_over_norm=X_over_norm[:1974]
X_test_over_norm=X_over_norm[1974:]
#plot_Roc(X_train_over_norm, X_test_over_norm, y_train_over, y_test, DecisionTreeClassifier)
## Undersampling + Normalize len(X_train_under)=378
X_train_under, y_train_under = res.fit_sample(X_train, y_train)
X_train_under_d=pd.DataFrame(X_train_under)
X_test.columns=list(range(0,31))
X_under = pd.concat([X_train_under_d, X_test],axis=0)
pre3=pd.DataFrame(preprocessing.normalize(X_under.iloc[:,:24]))
pre4=pd.DataFrame(preprocessing.normalize(X_under.iloc[:,24:]))
X_under_norm = pd.concat([pre3,pre4],axis=1)
X_train_under_norm = X_under_norm[:378]
X_test_under_norm = X_under_norm[378:]
#plot_Roc(X_train_under_norm, X_test_under_norm, y_train_under, y_test, DecisionTreeClassifier)
## Feaure Extraction
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(data_new.drop(columns="Attrition"))
print(pca.explained_variance_ratio_)
print(round(pca.explained_variance_ratio_.sum(),2))
X_train_pca, X_test_pca, y_train_pca, y_test_pca = train_test_split( principalComponents, data_new["Attrition"], test_size = 0.2, random_state = 12)
## PCA + over sampling
X_train_pca_over, y_train_pca_over = ros.fit_sample(X_train_pca, y_train_pca)
#plot_Roc(X_train_pca_over, X_test_pca, y_train_pca_over, y_test_pca,DecisionTreeClassifier)
## PCA + under sampling
X_train_pca_under, y_train_pca_under = res.fit_sample(X_train_pca, y_train_pca)
#plot_Roc(X_train_pca_under, X_test_pca, y_train_pca_under, y_test_pca,DecisionTreeClassifier)
## over sampling + normalize + PCA X_train= 1176 X_train(over)=1974 X_test=294 X=2268
pca2 = PCA(n_components=2)
principalComponents2 = pca2.fit_transform(X_over_norm)
print(round(pca2.explained_variance_ratio_.sum(),2))
X_over_norm_pca= pd.DataFrame(principalComponents2)
X_train_over_norm_pca=X_over_norm_pca[:1974]
X_test_over_norm_pca =X_over_norm_pca[1974:]
#plot_Roc(X_train_over_norm_pca, X_test_over_norm_pca, y_train_over, y_test ,DecisionTreeClassifier)
## under sampling + normalize + feature extraction X_train= 378 X_test=294 X= 672
pca3 = PCA(n_components=7)
principalComponents3 = pca3.fit_transform(X_under_norm)
print(round(pca3.explained_variance_ratio_.sum(),2))
X_under_norm_pca= pd.DataFrame(principalComponents3)
X_train_under_norm_pca=X_under_norm_pca[:378]
X_test_under_norm_pca =X_under_norm_pca[378:]
#plot_Roc(X_train_under_norm_pca, X_test_under_norm_pca, y_train_under, y_test ,DecisionTreeClassifier)
## over sampling + PCA X_train= 1176 X_train(over)=1974 X_test=294 X=2268
pca4 = PCA(n_components=2)
principalComponents4 = pca4.fit_transform(X_over)
print(round(pca4.explained_variance_ratio_.sum(),2))
X_over_pca= pd.DataFrame(principalComponents4)
X_train_over_pca=X_over_pca[:1974]
X_test_over_pca =X_over_pca[1974:]
#plot_Roc(X_train_over_pca, X_test_over_pca, y_train_over, y_test ,DecisionTreeClassifier)
## under sampling + feature extraction X_train= 378 X_test=294 X= 672
pca5 = PCA(n_components=2)
principalComponents5 = pca5.fit_transform(X_under)
print(round(pca5.explained_variance_ratio_.sum(),2))
X_under_pca= pd.DataFrame(principalComponents5)
X_train_under_pca=X_under_pca[:378]
X_test_under_pca =X_under_pca[378:]
# plot_Roc(X_train_under_pca, X_test_under_pca, y_train_under, y_test ,DecisionTreeClassifier)
## Feature selection
X_train, X_test, y_train, y_test = train_test_split(data_new.drop(columns="Attrition"), data_new['Attrition'], test_size = 0.2,random_state=12)
selector = SelectKBest(chi2, k="all")
X_new = selector.fit_transform(X_train, y_train)
names = data_new.drop(columns="Attrition").columns.values[selector.get_support()]
scores = selector.scores_[selector.get_support()]
names_scores = list(zip(names, scores))
ns_df = pd.DataFrame(data = names_scores, columns=['Feat_names', 'F_Scores'])
#Sort the dataframe for better visualization
ns_df_sorted = ns_df.sort_values(['F_Scores', 'Feat_names'], ascending = [False, True])
x_cord=list(range(1,32))
X_train_feature_list=[]
X_test_feature_list=[]
for i in x_cord:
topfeature_train= X_train[ns_df_sorted["Feat_names"][:i,]]
X_train_feature_list.append(topfeature_train)
topfeature_test= X_test[ns_df_sorted["Feat_names"][:i,]]
X_test_feature_list.append(topfeature_test)
performance=[]
for i, j in zip(X_train_feature_list,X_test_feature_list):
p=performance_DT1(i,y_train,j,y_test)
performance.append(p)
i=10
X_train_select= X_train[ns_df_sorted["Feat_names"][:i,]]
X_test_select= X_test[ns_df_sorted["Feat_names"][:i,]]
#plot_Roc(X_train_select, X_test_select, y_train, y_test ,DecisionTreeClassifier)
## over sampling + normalization + feature selection X_train= 1176 X_train(over)=1974 X_test=294 X=2268
X_over_norm_d=pd.DataFrame(X_over_norm)
X_over_norm_d.columns=X_train.columns
X_train_over_norm_select = X_over_norm_d[ns_df_sorted["Feat_names"][:i,]][:1974]
X_test_over_norm_select = X_over_norm_d[ns_df_sorted["Feat_names"][:i,]][1974:]
#plot_Roc(X_train_over_norm_select, X_test_over_norm_select, y_train_over, y_test ,DecisionTreeClassifier)
## under dampling + normalization + feature selection X_train= 378 X_test=294 X= 672
X_under_norm_d=pd.DataFrame(X_under_norm)
X_under_norm_d.columns=X_train.columns
X_train_under_norm_select = X_under_norm_d[ns_df_sorted["Feat_names"][:i,]][:378]
X_test_under_norm_select = X_under_norm_d[ns_df_sorted["Feat_names"][:i,]][378:]
#plot_Roc(X_train_under_norm_select, X_test_under_norm_select, y_train_under, y_test ,DecisionTreeClassifier)
## over sampling + feature selection X_train= 1176 X_train(over)=1974 X_test=294 X=2268
X_over.columns=X_train.columns
X_train_over_select = X_over[ns_df_sorted["Feat_names"][:i,]][:1974]
X_test_over_select = X_over[ns_df_sorted["Feat_names"][:i,]][1974:]
#plot_Roc(X_train_over_select, X_test_over_select, y_train_over, y_test ,DecisionTreeClassifier)
## under sampling + feature selection X_train= 378 X_test=294 X= 672
X_under.columns=X_train.columns
X_train_under_select = X_under[ns_df_sorted["Feat_names"][:i,]][:378]
X_test_under_select = X_under[ns_df_sorted["Feat_names"][:i,]][378:]
#plot_Roc(X_train_under_select, X_test_under_select, y_train_under, y_test ,DecisionTreeClassifier)
### Find the optimal point
def cutoff_youdens_j(fpr,tpr,thresholds):
j_scores = tpr-fpr
j_ordered = sorted(zip(j_scores,thresholds,fpr,tpr))
thred_new =j_ordered[-1][1]
fpr_new =j_ordered[-1][2]
tpr_new = j_ordered[-1][3]
return (fpr_new,tpr_new,thred_new)
### Performance including ROC,AUC,Accuracy, Sensitivity, Spesificity
def SVM_performance(X_train,X_test,y_train,y_test):
svm = LinearSVC(random_state=111,C=1)
clf = CalibratedClassifierCV(svm)
clf.fit(X_train, y_train)
preds1 = clf.predict_proba(X_train)[::,1]
pred_train= clf.predict(X_train)
fpr, tpr, thresholds = metrics.roc_curve(y_train, preds1)
thresholds = np.delete(thresholds, 0)
fpr = np.delete(fpr, 0)
tpr = np.delete(tpr, 0)
roc_auc = auc(fpr, tpr)
plt.title('ROC:SVM_Training data')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
ax2 = plt.gca().twinx()
ax2.plot(fpr, thresholds, markeredgecolor='r',linestyle='dashed', color='green')
ax2.set_ylabel('Threshold',color='green')
ax2.set_ylim([thresholds[-1],thresholds[0]])
ax2.set_xlim([fpr[0],fpr[-1]])
plt.show()
preds2 = clf.predict_proba(X_test)[::,1]
pred= clf.predict(X_test)
fpr2, tpr2, thresholds2 = metrics.roc_curve(y_test, preds2)
thresholds2 = np.delete(thresholds2, 0)
fpr2 = np.delete(fpr2, 0)
tpr2 = np.delete(tpr2, 0)
roc_auc2 = auc(fpr2, tpr2)
##set the threshold that can max the tpr & fpr
fpr_new,tpr_new,thred_new= cutoff_youdens_j(fpr2,tpr2,thresholds2)
#plt.title('ROC:SVM_Test data')
plt.plot(fpr2, tpr2, 'b', label = 'AUC = %0.2f' % roc_auc2)
plt.plot(fpr_new, tpr_new, 'bo')
#plt.plot([fpr_new, fpr_new, 0], [0, tpr_new, tpr_new], 'k-', lw=1,dashes=[2, 2])
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
ax2 = plt.gca().twinx()
ax2.plot(fpr2, thresholds2, markeredgecolor='r',linestyle='dashed', color='green')
ax2.set_ylabel('Threshold',color='green')
ax2.set_ylim([thresholds2[-1],thresholds2[0]])
ax2.set_xlim([fpr2[0],fpr2[-1]])
plt.show()
predict_mine = np.where(preds2 >=thred_new, 1, 0)
#pred_train_new = np.where(preds1 >=thred_new, 1, 0)
## get confusion matrix
cm_test = confusion_matrix(y_test, predict_mine)
cm_train = confusion_matrix(y_train, pred_train)
tn1, fp1, fn1, tp1 = confusion_matrix(y_test, predict_mine).ravel()
tn2, fp2, fn2, tp2 = confusion_matrix(y_train, pred_train).ravel()
## optimal test
Sensitivity_test = tp1/(tp1+fn1)
Specificity_test = tn1/(tn1+fp1)
Performance_test = Sensitivity_test+Specificity_test
## train
Sensitivity_train = tp2/(tp2+fn2)
Specificity_train= tn2/(tn2+fp2)
Performance_train =Sensitivity_train+Specificity_train
Accuracy_test = round(accuracy_score(y_test, predict_mine),2)
Accuracy_train = round(accuracy_score(y_train,pred_train),2)
table = tabulate([
['Threshold',thred_new],\
['Sensitivity_train',Sensitivity_train],\
['Specificity_train', Specificity_train],\
['Performance_train', Performance_train],\
['Sensitivity_test',Sensitivity_test],\
['Specificity_test',Specificity_test],\
['Performance_test',Performance_test],\
['Accuracy_train', Accuracy_train],\
['Accuracy_test', Accuracy_test]],headers=['Performance', 'Value'], tablefmt='orgtbl')
comparison_table=pd.concat([pd.DataFrame(preds2[:10]),pd.DataFrame(pred[:10]),pd.DataFrame(predict_mine[:10])],axis=1)
comparison_table.columns=['Probability','Prediction','Optimal Prediction']
print ("Confusion Matrix_train:{}".format(cm_train))
print ("Confusion Matrix_test :{}".format(cm_test))
print(table)
print(comparison_table)
return cm_test
SVM_performance(X_train,X_test,y_train,y_test)
SVM_performance(X_train_over, X_test, y_train_over, y_test)
SVM_performance(X_train_under, X_test, y_train_under, y_test)
SVM_performance(X_train_norm, X_test_norm, y_train_norm, y_test_norm)
SVM_performance(X_train_norm_over, X_test_norm, y_train_norm_over, y_test_norm)
SVM_performance(X_train_norm_under, X_test_norm, y_train_norm_under, y_test_norm)
SVM_performance(X_train_over_norm, X_test_over_norm, y_train_over, y_test)
SVM_performance(X_train_under_norm, X_test_under_norm, y_train_under, y_test)
SVM_performance(X_train_pca, X_test_pca, y_train_pca, y_test_pca)
SVM_performance(X_train_pca_over, X_test_pca, y_train_pca_over, y_test_pca)
SVM_performance(X_train_pca_under, X_test_pca, y_train_pca_under, y_test_pca)
SVM_performance(X_train_over_pca, X_test_over_pca, y_train_over, y_test)
SVM_performance(X_train_under_pca, X_test_under_pca, y_train_under, y_test)
SVM_performance(X_train_over_norm_pca, X_test_over_norm_pca, y_train_over, y_test)
SVM_performance(X_train_under_norm_pca, X_test_under_norm_pca, y_train_under, y_test)
SVM_performance(X_train_select, X_test_select, y_train, y_test)
SVM_performance(X_train_over_select, X_test_over_select, y_train_over, y_test)
SVM_performance(X_train_under_select, X_test_under_select, y_train_under, y_test)
SVM_performance(X_train_over_norm_select, X_test_over_norm_select, y_train_over, y_test)
SVM_performance(X_train_under_norm_select, X_test_under_norm_select, y_train_under, y_test)
res = RandomUnderSampler(random_state=12)
X_train_under, y_train_under = res.fit_sample(X_train, y_train)
def ploterror_rate_C(X_train,X_test,y_train,y_test):
seed= range(20)
C =[0.0001,0.001,0.01,0.1,1,10,100,1000,10000]
avg_err_rate_train_list=[]
avg_err_rate_test_list=[]
for c in C:
error_rate_train_list=[]
error_rate_test_list=[]
for i in seed:
clf = LinearSVC(C=c,random_state = i)
clf.fit(X_train, y_train)
y_pred= clf.predict(X_test)
y_train_pred = clf.predict(X_train)
resubstutution_B = 1- accuracy_score(y_train,y_train_pred)
generalization_B = 1- accuracy_score(y_test, y_pred)
error_rate_train_list.append(resubstutution_B)
error_rate_test_list.append(generalization_B)
avg_err_rate_train_list.append(sum(error_rate_train_list)/len(error_rate_train_list))
avg_err_rate_test_list.append(sum(error_rate_test_list)/len(error_rate_test_list))
plt.plot( C,avg_err_rate_train_list,label='Error_rate_train',color="blue")
plt.plot( C,avg_err_rate_train_list,label='Error_rate_test',color="red",alpha=0.5)
plt.legend()
plt.ylabel('Error rate')
plt.xlabel('The value of C')
ax = plt.subplot(111)
ax.set_xscale('log')
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ploterror_rate_C(X_train_over_norm, X_test_over_norm, y_train_over, y_test)