Skip to content

Latest commit

 

History

History
49 lines (38 loc) · 1.49 KB

README.md

File metadata and controls

49 lines (38 loc) · 1.49 KB

census-scvi

Instructions for running in AWS

  1. Launch an instance with the Deep Learning Base GPU AMI. Note that this AMI currently only supports P5, P4de, P4d, P3, G5, G3, and G4dn instances.

  2. Log into the instance and configure GPUs to run inside Docker containers

    sudo nvidia-ctk runtime configure --runtime=docker
    sudo systemctl restart docker
    
  3. Pull the image:

    docker pull martinkim0/scvi-tools:py3.11-cu11-autotune-main
    
  4. Mount the AWS drive to a directory

    sudo mkdir /data
    sudo mount /dev/mapper/name-of-drive /data
    
  5. Clone this repository

    git clone https://github.com/YosefLab/census-scvi.git
    
  6. Run the container in detached mode with a mounted volume

    docker run --name autotune --rm --gpus all --volume /data:/data -dit martinkim0/scvi-tools:py3.11-cu11-autotune-main /bin/bash
    
  7. Copy the repository into the container

    docker cp census-scvi autotune:census-scvi
    
  8. Execute the autotune script in the container

    docker exec -d autotune python /census-scvi/bin/autotune_scvi_v2.py --adata_path path_to_adata --batch_key batch_key --num_cpus num_cpus --num_gpus num_gpus --experiment_name experiment_name --save_dir /data
    
  9. After the experiment finishes, you can stop the container

    docker stop autotune
    
  10. All logs are stored in the save_dir argument passed into (6)