-
Replace THC-based DCNv2 with ATen-based DCNv2. If it is not replaced, you will get (TypeError: int() not supported on cdata 'struct THLongTensor *') when converting onnx, and I have no idea to solve it. So I use DCNv2 from mmdetection.
- copy the dcn to lib/models/netowrks
cp -r dcn lib/models/netowrks
- upgrade pytorch to 1.0-1.1
- complie Deform Conv
cd lib/models/netowrks/dcn python setup.py build_ext --inplace
- copy the dcn to lib/models/netowrks
-
Add symbolic to DeformConvFunction.
class ModulatedDeformConvFunction(Function): @staticmethod def symbolic(g, input, offset, mask, weight, bias,stride,padding,dilation,groups,deformable_groups): return g.op("DCNv2", input, offset, mask, weight, bias, stride_i = stride,padding_i = padding,dilation_i = dilation, groups_i = groups,deformable_group_i = deformable_groups) @staticmethod def forward(ctx, input, offset, mask, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1): pass#.......
-
Change import
- change (from .DCNv2.dcn_v2 import DCN) to (from .dcn.modules.deform_conv import ModulatedDeformConvPack as DCN) in pose_dla_dcn.py and resnet_dcn.py.
- Now you can convert the model using Deform Conv to onnx.
-
For dla34.
- convert ctdet_coco_dla_2x.pth to ctdet_coco_dla_2x.onnx
from lib.opts import opts from lib.models.model import create_model, load_model from types import MethodType import torch.onnx as onnx import torch from torch.onnx import OperatorExportTypes from collections import OrderedDict ## onnx is not support dict return value ## for dla34 def pose_dla_forward(self, x): x = self.base(x) x = self.dla_up(x) y = [] for i in range(self.last_level - self.first_level): y.append(x[i].clone()) self.ida_up(y, 0, len(y)) ret = [] ## change dict to list for head in self.heads: ret.append(self.__getattr__(head)(y[-1])) return ret ## for dla34v0 def dlav0_forward(self, x): x = self.base(x) x = self.dla_up(x[self.first_level:]) # x = self.fc(x) # y = self.softmax(self.up(x)) ret = [] ## change dict to list for head in self.heads: ret.append(self.__getattr__(head)(x)) return ret ## for resdcn def resnet_dcn_forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.deconv_layers(x) ret = [] ## change dict to list for head in self.heads: ret.append(self.__getattr__(head)(x)) return ret forward = {'dla':pose_dla_forward,'dlav0':dlav0_forward,'resdcn':resnet_dcn_forward} opt = opts().init() ## change lib/opts.py add_argument('task', default='ctdet'....) to add_argument('--task', default='ctdet'....) opt.arch = 'dla_34' opt.heads = OrderedDict([('hm', 80), ('reg', 2), ('wh', 2)]) opt.head_conv = 256 if 'dla' in opt.arch else 64 print(opt) model = create_model(opt.arch, opt.heads, opt.head_conv) model.forward = MethodType(forward[opt.arch.split('_')[0]], model) load_model(model, 'ctdet_coco_dla_2x.pth') model.eval() model.cuda() input = torch.zeros([1, 3, 512, 512]).cuda() onnx.export(model, input, "ctdet_coco_dla_2x.onnx", verbose=True, operator_export_type=OperatorExportTypes.ONNX)
- If you get (ValueError: Auto nesting doesn't know how to process an input object of type int. Accepted types: Tensors, or lists/tuples of them)
You need to change (def _iter_filter) in torch.autograd.function.
def _iter_filter(....): .... if condition(obj): yield obj elif isinstance(obj,int): ## int to tensor yield torch.tensor(obj) ....
- convert ctdet_coco_dla_2x.pth to ctdet_coco_dla_2x.onnx
-
onnx-tensorrt DCNv2 plugin
- Related code
- onnx-tensorrt/builtin_op_importers.cpp
- onnx-tensorrt/builtin_plugins.cpp
- onnx-tensorrt/DCNv2.hpp
- onnx-tensorrt/DCNv2.cpp
- onnx-tensorrt/dcn_v2_im2col_cuda.cu
- onnx-tensorrt/dcn_v2_im2col_cuda.h
- Not only support centernet. If you want to convert other model to tensorrt engine, please refer to src/ctdetNet.cpp or contact me.
- Related code