Skip to content

Reconstructing a high-resolution image from a low-resolution image

License

Notifications You must be signed in to change notification settings

YoushaaMurhij/Super-Resolution-Project

Repository files navigation

Super-Resolution

License Binder

The goal of this project is to upscale and improve the quality of low resolution images.

This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components.

The implemented networks include:

Installation

To install the Image Super-Resolution package:

  • Install ISR from PyPI:
pip install ISR

Usage

All steps are included in the notebooks.

Prediction

Load image and prepare it

import numpy as np
from PIL import Image

img = Image.open('data/input/test_images/sample_image.jpg')
lr_img = np.array(img)

Load model and run prediction

from ISR.models import RDN

rdn = RDN(arch_params={'C':6, 'D':20, 'G':64, 'G0':64, 'x':2})
rdn.model.load_weights('weights/sample_weights/rdn-C6-D20-G64-G064-x2/ArtefactCancelling/rdn-C6-D20-G64-G064-x2_ArtefactCancelling_epoch219.hdf5')

sr_img = rdn.predict(lr_img)
Image.fromarray(sr_img)

Large image inference

To predict on large images and avoid memory allocation errors, use the by_patch_of_size option for the predict method, for instance

sr_img = model.predict(image, by_patch_of_size=50)

Check the documentation of the ImageModel class for further details.

Training

Create the models

from ISR.models import RRDN
from ISR.models import Discriminator
from ISR.models import Cut_VGG19

lr_train_patch_size = 40
layers_to_extract = [5, 9]
scale = 2
hr_train_patch_size = lr_train_patch_size * scale

rrdn  = RRDN(arch_params={'C':4, 'D':3, 'G':64, 'G0':64, 'T':10, 'x':scale}, patch_size=lr_train_patch_size)
f_ext = Cut_VGG19(patch_size=hr_train_patch_size, layers_to_extract=layers_to_extract)
discr = Discriminator(patch_size=hr_train_patch_size, kernel_size=3)

Create a Trainer object using the desired settings and give it the models (f_ext and discr are optional)

from ISR.train import Trainer
loss_weights = {
  'generator': 0.0,
  'feature_extractor': 0.0833,
  'discriminator': 0.01
}
losses = {
  'generator': 'mae',
  'feature_extractor': 'mse',
  'discriminator': 'binary_crossentropy'
}

log_dirs = {'logs': './logs', 'weights': './weights'}

learning_rate = {'initial_value': 0.0004, 'decay_factor': 0.5, 'decay_frequency': 30}

flatness = {'min': 0.0, 'max': 0.15, 'increase': 0.01, 'increase_frequency': 5}

trainer = Trainer(
    generator=rrdn,
    discriminator=discr,
    feature_extractor=f_ext,
    lr_train_dir='low_res/training/images',
    hr_train_dir='high_res/training/images',
    lr_valid_dir='low_res/validation/images',
    hr_valid_dir='high_res/validation/images',
    loss_weights=loss_weights,
    learning_rate=learning_rate,
    flatness=flatness,
    dataname='image_dataset',
    log_dirs=log_dirs,
    weights_generator=None,
    weights_discriminator=None,
    n_validation=40,
)

Start training

trainer.train(
    epochs=80,
    steps_per_epoch=500,
    batch_size=16,
    monitored_metrics={'val_PSNR_Y': 'max'}
)

source: ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks

Copyright

See LICENSE for details.

About

Reconstructing a high-resolution image from a low-resolution image

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published