-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
340 lines (274 loc) · 14.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import argparse
import random
import shutil
import os
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import transforms
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose
from albumentations import RandomRotate90, Resize
import src.utils.losses as losses
from src.utils.util import AverageMeter
from src.utils.metrics import iou_score
from src.utils import ramps
from src.dataloader.dataset import (SemiDataSets, TwoStreamBatchSampler)
from src.network.DFCG import DFCG
from thop import profile
import csv
import matplotlib.pyplot as plt
import torchvision.transforms.functional as TF
def seed_torch(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
parser = argparse.ArgumentParser()
parser.add_argument('--semi_percent', type=float, default=0.5)
parser.add_argument('--base_dir', type=str, default="./data/BUSI", help='dir')
parser.add_argument('--train_file_dir', type=str, default="BUSI_train.txt", help='dir')
parser.add_argument('--val_file_dir', type=str, default="BUSI_val.txt", help='dir')
parser.add_argument('--max_iterations', type=int,
default=40000, help='maximum epoch number to train')
parser.add_argument('--total_batch_size', type=int, default=6,
help='batch_size per gpu')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--seed', type=int, default=41, help='random seed')
parser.add_argument('--labeled_bs', type=int, default=3,
help='labeled_batch_size per gpu')
parser.add_argument('--consistency', type=float,
default=7, help='consistency')
parser.add_argument('--consistency_rampup', type=float,
default=200.0, help='consistency_rampup')
parser.add_argument('--kernel_size', type=int,
default=7, help='FCMxierBlock kernel size')
parser.add_argument('--length', type=tuple,
default=(3, 3, 3), help='length of FCMxierBlock')
args = parser.parse_args()
seed_torch(args.seed)
def getDataloader(args):
train_transform = Compose([
RandomRotate90(),
transforms.Flip(),
Resize(256, 256),
transforms.Normalize(),
])
val_transform = Compose([
Resize(256, 256),
transforms.Normalize(),
])
labeled_slice = args.semi_percent
db_train = SemiDataSets(base_dir=args.base_dir, split="train", transform=train_transform,
train_file_dir=args.train_file_dir, val_file_dir=args.val_file_dir,
)
db_val = SemiDataSets(base_dir=args.base_dir, split="val", transform=val_transform,
train_file_dir=args.train_file_dir, val_file_dir=args.val_file_dir
)
def worker_init_fn(worker_id):
random.seed(args.seed + worker_id)
total_slices = len(db_train)
labeled_idxs = list(range(0, int(labeled_slice * total_slices)))
unlabeled_idxs = list(range(int(labeled_slice * total_slices), total_slices))
print("label num:{}, unlabel num:{} percent:{}".format(len(labeled_idxs), len(unlabeled_idxs), labeled_slice))
batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, args.total_batch_size, args.labeled_bs)
trainloader = DataLoader(db_train, batch_sampler=batch_sampler,
num_workers=8, pin_memory=False, worker_init_fn=worker_init_fn)
valloader = DataLoader(db_val, batch_size=1, shuffle=False, num_workers=1)
return trainloader, valloader
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
def getModel(args):
print("FCMxierBlock1:{}, FCMxierBlock2:{}, FCMxierBlock3:{}, kernal:{}".format(args.length[0], args.length[1],
args.length[2], args.kernel_size))
model = DFCG(length=args.length, k=args.kernel_size).cuda()
# Calculate FLOPs and Params
input_size = (3, 256, 256) # Replace with your actual input size
input_data = torch.randn(1, *input_size).cuda()
flops, params = profile(model, inputs=(input_data,))
print(f"FLOPs: {flops}, Params: {params}")
return model
def save_images(original, prediction, true_label, output_dir, index):
os.makedirs(output_dir, exist_ok=True)
original_path = os.path.join(output_dir, f"original_{index:04d}.png")
prediction_path = os.path.join(output_dir, f"prediction_{index:04d}.png")
true_label_path = os.path.join(output_dir, f"true_label_{index:04d}.png")
# Convert tensors to PIL images
original_pil = TF.to_pil_image(original)
prediction_pil = TF.to_pil_image(prediction)
true_label_pil = TF.to_pil_image(true_label)
# Save the images
original_pil.save(original_path)
prediction_pil.save(prediction_path)
true_label_pil.save(true_label_path)
def train(args):
base_lr = args.base_lr
max_iterations = int(args.max_iterations * args.semi_percent)
trainloader, valloader = getDataloader(args)
model = getModel(args)
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
print("lr", base_lr)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, max_iterations)
criterion = losses.__dict__['BCEDiceLoss']().cuda()
print("{} iterations per epoch".format(len(trainloader)))
best_iou = 0
best_val_iou = 0
best_epoch = 0
iter_num = 0
max_epoch = max_iterations // len(trainloader) + 1
# max_epoch = max_epoch + 100
results_file = os.path.join('checkpoint', 'results.csv')
with open(results_file, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Epoch', 'Train Loss', 'Supervised Loss', 'Consistency Loss', 'Train IOU',
'Val Loss', 'Val IOU', 'Val DICE', 'Val SE', 'Val PC', 'Val F1', 'Val SP', 'Val ACC'])
train_losses = []
val_losses = []
for epoch_num in range(max_epoch):
avg_meters = {'total_loss': AverageMeter(),
'train_iou': AverageMeter(),
'consistency_loss': AverageMeter(),
'supervised_loss': AverageMeter(),
'val_loss': AverageMeter(),
'val_iou': AverageMeter(),
'val_dice': AverageMeter(),
'val_se': AverageMeter(),
'val_pc': AverageMeter(),
'val_f1': AverageMeter(),
'val_sp': AverageMeter(),
'val_acc': AverageMeter()
}
model.train()
for i_batch, sampled_batch in enumerate(trainloader):
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
outputs, outputs_aux1, outputs_aux2, outputs_aux3 = model(volume_batch)
outputs_soft = torch.sigmoid(outputs)
outputs_aux1_soft = torch.sigmoid(outputs_aux1)
outputs_aux2_soft = torch.sigmoid(outputs_aux2)
outputs_aux3_soft = torch.sigmoid(outputs_aux3)
loss_ce = criterion(outputs[:args.labeled_bs],
label_batch[:args.labeled_bs][:])
loss_ce_aux1 = criterion(outputs_aux1[:args.labeled_bs],
label_batch[:args.labeled_bs][:])
loss_ce_aux2 = criterion(outputs_aux2[:args.labeled_bs],
label_batch[:args.labeled_bs][:])
loss_ce_aux3 = criterion(outputs_aux3[:args.labeled_bs],
label_batch[:args.labeled_bs][:])
supervised_loss = (loss_ce + loss_ce_aux1 + loss_ce_aux2 + loss_ce_aux3) / 4
consistency_weight = get_current_consistency_weight(iter_num // 150)
consistency_loss_aux1 = torch.mean(
(outputs_soft[args.labeled_bs:] - outputs_aux1_soft[args.labeled_bs:]) ** 2)
consistency_loss_aux2 = torch.mean(
(outputs_soft[args.labeled_bs:] - outputs_aux2_soft[args.labeled_bs:]) ** 2)
consistency_loss_aux3 = torch.mean(
(outputs_soft[args.labeled_bs:] - outputs_aux3_soft[args.labeled_bs:]) ** 2)
consistency_loss = (consistency_loss_aux1 + consistency_loss_aux2 + consistency_loss_aux3) / 3
loss = supervised_loss + consistency_weight * consistency_loss
iou, dice, _, _, _, _, _ = iou_score(outputs[:args.labeled_bs], label_batch[:args.labeled_bs])
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
iter_num = iter_num + 1
avg_meters['total_loss'].update(loss.item(), volume_batch[:args.labeled_bs].size(0))
avg_meters['supervised_loss'].update(supervised_loss.item(), volume_batch[:args.labeled_bs].size(0))
avg_meters['consistency_loss'].update(consistency_loss.item(), volume_batch[args.labeled_bs:].size(0))
avg_meters['train_iou'].update(iou, volume_batch[:args.labeled_bs].size(0))
model.eval()
with torch.no_grad():
for i_batch, sampled_batch in enumerate(valloader):
input, target = sampled_batch['image'], sampled_batch['label']
input = input.cuda()
target = target.cuda()
output = model(input)
loss = criterion(output, target)
iou, dice, SE, PC, F1, SP, ACC = iou_score(output, target)
avg_meters['val_loss'].update(loss.item(), input.size(0))
avg_meters['val_iou'].update(iou, input.size(0))
avg_meters['val_dice'].update(dice, input.size(0))
avg_meters['val_se'].update(SE, input.size(0))
avg_meters['val_pc'].update(PC, input.size(0))
avg_meters['val_f1'].update(F1, input.size(0))
avg_meters['val_sp'].update(SP, input.size(0))
avg_meters['val_acc'].update(ACC, input.size(0))
input_normalized = input.cpu().detach().numpy()[0][0]
input_normalized = (input_normalized - np.min(input_normalized)) / (np.max(input_normalized) - np.min(input_normalized))
ori = input_normalized * 255
pre = output.cpu().detach().numpy()[0][0] * 255
gt = target.cpu().detach().numpy()[0][0] * 255
file_name1 = "original_{}.png".format(i_batch)
file_name2 = "prediction_{}.jpg".format(i_batch)
file_name3 = "true_label_{}.jpg".format(i_batch)
folder_path = "./checkpoint/temp_mask"
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path1 = os.path.join(folder_path, file_name1)
file_path2 = os.path.join(folder_path, file_name2)
file_path3 = os.path.join(folder_path, file_name3)
cv2.imencode('.png', ori)[1].tofile(file_path1)
cv2.imencode('.jpg', pre)[1].tofile(file_path2)
cv2.imencode('.jpg', gt)[1].tofile(file_path3)
# Here check if this epoch's average is better than the best avg iou score
if avg_meters['val_iou'].avg > best_val_iou:
best_val_iou = avg_meters['val_iou'].avg
best_epoch = epoch_num
# If the current score is better, delete the old directory and rename the new one
mask_dir = "./checkpoint/mask"
if os.path.exists(mask_dir):
shutil.rmtree(mask_dir)
os.rename(folder_path, mask_dir)
else:
# Clear temp data if current is not best
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
avg_train_loss = avg_meters['total_loss'].avg
avg_val_loss = avg_meters['val_loss'].avg
train_losses.append(avg_train_loss)
val_losses.append(avg_val_loss)
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Train Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Train and Validation Loss')
plt.legend()
checkpoint_dir = './checkpoint'
os.makedirs(checkpoint_dir, exist_ok=True)
loss_curve_path = os.path.join(checkpoint_dir, 'loss_curve.png')
plt.savefig(loss_curve_path)
plt.close()
# print('epoch [%3d/%d]'% (epoch_num, max_epoch))
print(
'epoch [%3d/%d] train_loss %.4f supervised_loss %.4f consistency_loss %.4f train_iou: %.4f '
'- val_loss %.4f - val_iou %.4f - val_Dice %.4f - val_SE %.4f - val_PC %.4f - val_F1 %.4f - val_SP %.4f - val_ACC %.4f'
% (epoch_num, max_epoch, avg_meters['total_loss'].avg,
avg_meters['supervised_loss'].avg, avg_meters['consistency_loss'].avg, avg_meters['train_iou'].avg,
avg_meters['val_loss'].avg, avg_meters['val_iou'].avg, avg_meters['val_dice'].avg,
avg_meters['val_se'].avg, avg_meters['val_pc'].avg, avg_meters['val_f1'].avg,
avg_meters['val_sp'].avg, avg_meters['val_acc'].avg))
with open(results_file, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([epoch_num, avg_meters['total_loss'].avg, avg_meters['supervised_loss'].avg,
avg_meters['consistency_loss'].avg, avg_meters['train_iou'].avg,
avg_meters['val_loss'].avg, avg_meters['val_iou'].avg, avg_meters['val_dice'].avg,
avg_meters['val_se'].avg, avg_meters['val_pc'].avg, avg_meters['val_f1'].avg,
avg_meters['val_sp'].avg, avg_meters['val_acc'].avg, ])
if avg_meters['val_iou'].avg > best_iou:
torch.save(model.state_dict(), 'checkpoint/model.pth')
best_iou = avg_meters['val_iou'].avg
print("=> saved best model")
return "Training Finished! Results saved in: {}".format(results_file)
if __name__ == "__main__":
train(args)