-
Notifications
You must be signed in to change notification settings - Fork 0
/
publications.html
executable file
·2421 lines (2176 loc) · 61.2 KB
/
publications.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE HTML>
<html>
<head>
<title>
Publications
</title>
<meta content="text/html; charset=utf-8" http-equiv="content-type"/>
<meta content="Yu Group's Research Website" name="description"/>
<meta content="yugroup" name="keywords"/>
<script src="js/jquery.min.js">
</script>
<script src="js/skel.min.js">
</script>
<script src="js/skel-layers.min.js">
</script>
<script src="js/init.js">
</script>
<noscript>
<link href="css/skel.css" rel="stylesheet"/>
<link href="css/style.css" rel="stylesheet"/>
</noscript>
</head>
<body class="no-sidebar">
<!-- Header -->
<div id="header-wrapper">
<div class="container" id="header">
<!-- Logo -->
<h1 id="logo">
<a href="index.html">
YU Group
</a>
</h1>
<!-- Nav -->
<nav id="nav">
<ul>
<li>
<a href="people.html">
People
</a>
</li>
<li>
<a href="research.html">
Research
</a>
</li>
<li class="break">
<a href="publications.html">
Publications
</a>
</li>
<li>
<a href="code.html">
Code
</a>
</li>
</ul>
</nav>
</div>
</div>
<!-- Main -->
<div class="wrapper">
<center>
<header>
<h2>
Publications
</h2>
</header>
</center>
<div class="container" id="main">
<ul>
<li><p>Y. Tan, C. Singh, K. Nasseri, A. Agarwal, B. Yu (2022). Fast interpretable greedy-tree sums (FIGS). <a href="https://arxiv.org/abs/2201.11931">arXiv</a> </p><li>
<li><p>A. Agarwal, Y. Tan, O. Ronen, C. Singh, B. Yu (2022). Hierarchical shrinkage: improving accuracy and interpretability of tree-based methods. <a href="https://arxiv.org/abs/2202.00858>arXiv</a> </p><li>
<li><p>N. Ghosh, S. Mei, and B. Yu (2021). The three stages of dynamics in high-dimensional kernel methods. <a href="https://arxiv.org/abs/2111.07167>arXiv</a> </p><li>
<li><p>Y. Tan, A. Agarwal, and B. Yu (2021). A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds. <a href="https://arxiv.org/abs/2110.09626">arXiv</a> </p><li>
<li><p>N. Altieri, B. Park, J. DeNero, A. Odisho, B. Yu. (2021). Improving natural language information extraction from cancer pathology reports using transfer learning and zero-shot string similarity. JAMIA Open. 2021 Sept. 30 4(3).</p><li>
<li><p> C. Singh, W. Ha and B. Yu (2021). Interpreting and Improving Deep-Learning Models with Reality Checks. <a href="https://arxiv.org/abs/2108.06847">arXiv</a> </p></li>
<li><p> B. Yu and C. Singh (2021). Seven Principles for Rapid-Response Data Science: Lessons from Covid-19 Forecasting. <a href="https://arxiv.org/abs/2108.08445">arXiv</a> </p></li>
<li><p> Ha, W., Singh, C., Lanusse, F., Song, E., Dang, S., He, K., Upadhyayula, S. and Yu, B., 2021. Adaptive wavelet distillation from neural networks through interpretations. <a href="https://arxiv.org/abs/2107.09145">NeurIPS</a> </p></li>
<li><p>
M. Behr, Y. Wang, X. Li, B. Yu (2021). Provable Boolean Interaction Recovery from Tree Ensemble obtained via Random Forests. <a href="https://arxiv.org/abs/2102.11800">arXiv</a></p></li>
<li><p>N. Altieri, B. Park, M. Olson, J. DeNero, A. Odisho, B. Yu. (2020). Enriched Annotations for Tumor Attribute Classification from Pathology Reports with Limited Labeled Data. https://arxiv.org/abs/2012.08113</p></li>
<li><p>
M. Behr*, K. Kumbier*, A. Cordova-Palomera, M. Aguirre, E. Ashley, A. Butte, R. Arnaout, J. B. Brown, J. Preist*, B. Yu* (2020) Learning epistatic polygenic phenotypes with Boolean interactions https://www.biorxiv.org/content/10.1101/2020.11.24.396846v1</p></li>
<li><p>B. Norgeot*, G. Quer, B. K. Beaulieu-Jones, A. Torkamani, R. Dias, M. Gianfrancesco, R. Arnaout, I. S. Kohane, S. Saria, E. Topol, Z. Obermeyer, B. Yu & A. Butte* (2020). Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist, Nature Medicine, 26, 1320–1324.</p></li>
<li><p>B. Yu (2020). Stability expanded, in reality. Harvard Data Science Review (HDSR).</p></li>
<li><p>B. Yu and R. Barter (2020). Data science process: one culture. JASA.</p></li>
<li><p>
R. Dwivedi*, Y. Tan*, B. Park, M. Wei, K. Horgan, D. Madigan*, B. Yu* (2020). Stable discovery of interpretable subgroups via calibration in causal studies (staDISC). International Statistical Review and also at arxiv.org/abs/2008.10109</p></li>
<li><p>
X. Li, T. M. Tang, X. Wang, J. A. Kocher, B. Yu (2020). A stability-driven protocol for drug response interpretable prediction (staDRIP). NeurISP workshop on ML4H (Machine learning for Health) Extended Abstract. https://arxiv.org/abs/2011.06593</p></li>
<li><p>
A. Y. Odisho, B. Park, N. Altieri, J. DeNero, M. R Cooperberg, P. R .Carroll, B. Yu (2020). Natural language processing systems for pathology parsing in limited data environments with uncertainty estimation. Journal of American Medical Informatics Association (JAMIA) Open.
</p></li>
<li>
<p>
L. Reiger, J. W. Murdoch, S. Singh, B. Yu (2020). Interpretations are Useful: Penalizing Explanations to Align Neural Networks with Prior Knowledge. ICML Proceedings.
</p>
</li>
<li>
<p>
C. Singh, W. Ha, F. Lanusse, V. Boehm , J. Liu, B. Yu (2020). Transformation Importance with Applications to Cosmology ICLR Workshop paper.</p>
</li>
<li>
<p>
Raaz Dwivedi, Chandan Singh, Bin Yu, Martin J. Wainwright
(2020)
<a href="https://arxiv.org/abs/2006.10189">
Revisiting complexity and the bias-variance tradeoff.
</a>
<em>
arxiv.org/abs/2006.10189
</em>
</p>
</li>
<li>
<p>
Nick Altieri, Rebecca Barter, James Duncan (UCB-biostats), Raaz Dwivedi, Karl Kumbier (UCSF), Xiao Li, Robbie Netzorg, Briton Park, Chandan Singh, Yan Shuo Tan, Tiffany Tang, Yu Wang, Bin Yu.
(2020)
<a href="https://arxiv.org/abs/2005.07882">
Curating a COVID-19 data repository and forecasting county-level death counts in the United States.
</a>
<em>
arxiv.org/abs/2005.07882.
</em>
<a href="https://covidseverity.com">
7-day prediction results through visualizations and maps.
</a>
<a href="/~binyu/ps/papers2020/RDSS20-yu.mp4">
Short talk video at Responsible Data Science Summit, July 28, 2020.
</a>
</p>
</li>
<li>
<p>
B. Yu and K. Kumbier (2020)
<a href="/~binyu/ps/papers2020/VDS20-YuKumbier.pdf">
Verdical data science
</a>
<em>
PNAS.
</em>
117 (8), 3920-3929.
<a href="/~binyu/ps/papers2020/VDS20-QnAsBinYu.pdf">
QnAs with Bin Yu.
</a>
</p>
</li>
<li>
<p>
R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan and B. Yu
(2020)
<a href="https://arxiv.org/abs/1902.00194">
Sharp Analysis of Expectation-Maximization for Weakly Identifiable Mixture
Models
</a>
<em>
AISTATS.
https://arxiv.org/abs/1902.00194
</em>
</p>
</li>
<li>
<p>
R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan and B. Yu
(2020)
<a href="https://arxiv.org/abs/1810.00828">
Singularity, Misspecification and the Convergence Rate of EM
</a>
<em>
Annals of Statistics.
https://arxiv.org/abs/1810.00828
</em>
</p>
</li>
<li>
<p>
Y. Chen, R. Dwivedi, M. J. Wainwright and B. Yu
(2020)
<a href="https://arxiv.org/abs/1905.12247">
Fast Mixing of Metropolized Hamiltonian Monte Carlo: Benefits of Multi-Step Gradients
</a>
<em>
arXiv preprint
https://arxiv.org/abs/1905.12247
</em>
</p>
</li>
<li>
<p>
R. Dwivedi, Y. Chen, M. J. Wainwright and B. Yu
(2020)
<a href="http://jmlr.org/papers/v20/19-306.html">
Log-concave Sampling: Metropolis Hastings Algorithms are Fast (2019)
</a>
<em>
JMLR (accepted).
http://jmlr.org/papers/v20/19-306.html
</em>
</p>
</li>
<li>
<p>
Y. Chen, R. Dwivedi, M. J. Wainwright and B. Yu
(2020)
<a href="http://jmlr.org/papers/v19/18-158.html">
Fast MCMC Algorithms on Polytopes
</a>
<em>
JMLR (accepted).
http://jmlr.org/papers/v19/18-158.html
</em>
</p>
</li>
<li>
<p>
Y. Chen, R. Dwivedi, M. J. Wainwright and B. Yu
(2020)
<a href="https://ieeexplore.ieee.org/abstract/document/8262876/">
Vaidya Walk: A Sampling Algorithm Based on Volumetric-Logarithmic Barrier
</a>
<em>
Allerton Conference 2017
https://ieeexplore.ieee.org/abstract/document/8262876/
</em>
</p>
</li>
<li>
<p>
W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu (2019)
<a href="/~binyu/ps/papers2020/iML19-Murdochetal.pdf">
Interpretable machine learning: definitions, methods, and applications.
</a>
<em>
PNAS,
</em>
116 (44) 22071-22080.
</p>
</li>
<li>
<p>
Y. Wang, S. Wu and B. Yu (2019)
<a href="
https://arxiv.org/abs/1902.08380
">
Unique Sharp Local Minimum in â1-minimization Complete Dictionary Learning
</a>
<em>
JMLR (accepted with minor revision).
https://arxiv.org/abs/1902.08380
</em>
</p>
</li>
<li>
<p>
Y. Chen, R. Abbasi-Asl, A. Bloniarz, M. Oliver, B. Willmore, J. Gallant, and B. Yu (2018)
<a href="
https://www.biorxiv.org/content/10.1101/465534v1
">
The DeepTune framework for modeling and characterizing neurons in visual cortex area V4
</a>
<em>
https://www.biorxiv.org/content/10.1101/465534v1
</em>
</p>
</li>
<li>
<p>
K. Kumbier, S. Sumanta, J. B. Brown, S. Celniker, and B. Yu (2018)
<a href="
https://arxiv.org/abs/1810.07287
">
Refining interaction search through signed iterative Random Forests.
</a>
<em>
https://arxiv.org/abs/1810.07287
</em>
</p>
</li>
<li>
<p>
C. Singh, W. J. Murdoch, and B. Yu (2018)
<a href="
https://arxiv.org/abs/1806.05337
">
Hierarchical interpretations for neural network predictions.
</a>
<em>
https://arxiv.org/abs/1806.05337
</em>
</p>
</li>
<li>
<p>
Y. Chen C. Jin, and B. Yu (2018)
<a href="https://arxiv.org/abs/1804.01619">
Stability and Convergence Trade-off of Iterative
Optimization Algorithms.
</a>
<em>
https://arxiv.org/abs/1804.01619
</em>
</p>
</li>
<li>
<p>
J. Murdoch, P. Liu, and B. Yu (2018)
<a href="https://arxiv.org/abs/1801.05453">
Beyond word importance: contextual decomposition to extract interactions from LSTMs.
</a>
<em>
Proc. ICLR 2018. https://arxiv.org/abs/1705.07356
</em>
</p>
</li>
<li>
<p>
R. Diwivedi, Y. Chen, M. J. Wainwright, and B. Yu (2018)
<a href="
https://arxiv.org/abs/1801.02309
">
Log-concave sampling: Metropolis-Hastings algorithms are fast!
</a>
<em>
https://arxiv.org/abs/1801.02309.
</em>
</p>
</li>
<li>
<p>
Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu (2017)
<a href="
https://arxiv.org/abs/1710.08165
">
Fast MCMC sampling algorithms on polytopes
</a>
<em>
https://arxiv.org/abs/1710.08165.
</em>
</p>
</li>
<li>
<p>
B. Yu and K. Kumbier (2018)
<a href=" /~binyu/ps/papers2018/AI+Stat18.pdf">
Artificial Intelligence and Statistics
</a>
<em>
Frontiers of Information
Technology and Electronic Engineering. 19(1), 6-9.
</em>
</p>
</li>
<li>
<p>
R. Abbasi-Asl and B. Yu (2017)
<a href="
https://arxiv.org/abs/1705.07356
">
Structural Compression of Convolutional Neural Networks Based on Greedy Filter Pruning
</a>
<em>
https://arxiv.org/abs/1705.07356
</em>
</p>
</li>
<li>
<p>
R. Abbasi-Asl and B. Yu (2017)
<a href="
https://arxiv.org/abs/1711.02329
">
Interpreting Convolutional Neural Networks Through Compression.
</a>
<em>
NIPS 2017. Symposium on Interpretable Machine Learning.
(also https://arxiv.org/abs/1711.02329)
</em>
</p>
</li>
<li>
<p>
S. Kunzel, J. Sekhon, P. Bickel, and B. Yu (2017)
<a href="
https://arxiv.org/abs/1706.03461
">
Meta-learners for Estimating Heterogeneous
Treatment Effects using Machine Learning
</a>
<em>
https://arxiv.org/abs/1706.03461.
</em>
</p>
</li>
<li>
<p>
S. Basu, K. Kumbier, J. B. Brown, and B. Yu (2018)
<a href="/~binyu/ps/papers2018/iRF+SI18.pdf">
iterative Random Forests to discover predictive and stable high-order interactions
</a>
<em>
PNAS (early edition).
</em>
</p>
</li>
<li>
<p>
S. Balakrishnan, M. Wainwright, B. Yu (2017)
<a href="/~binyu/ps/papers2017/EM17.pdf">
Statistical Guarantees for the EM algorithm: from population to sample-based analysis.
</a>
<em>
Annals of Statistics, 45(1), 77 - 120.
</em>
</p>
</li>
<li>
<p>
R. Barter and B. Yu (2017)
<a href="/~binyu/ps/papers2017/superheat17.pdf">
Superheat: An R package for creating beautiful and extendable heatmaps for visualizing complex data
</a>
<em>
JCGS (revised). https://github.com/rlbarter/superheat
</em>
</p>
</li>
<li>
<p>
H. Liu and B. Yu (2017)
<a href="/~binyu/ps/papers2017/LiuYu-test17.pdf">
Comments on: High-dimensional simultaneous
inference with the bootstrap by Dezeure et al
</a>
<em>
Test. 26: 740-750.
</em>
</p>
</li>
<li>
C. Carson et al (2016).
<a href="/~binyu/ps/FAB2016.pdf">
UC Berkeley Data Science Planning Initiative Faculty Advisory Board (FAB)
Report.
</a>
<a href="/~binyu/ps/FAB-Summary2016.pdf">
FAB Report Executive Summary
</a>
<p>
</p>
</li>
<li>
S. Wu and B. Yu (2018).
<a href="../ps/papers2018/local-iden18.pdf">
Local identifiability of l1-minimization dictionary learning: a sufficient and almost necessary condition.
</a>
<em>
JMLR. 18, 1 - 56.
</em>
<p>
</p>
</li>
<li>
K. Rohe, T. Qin and B. Yu (2016).
<a href="http://www.pnas.org/content/113/45/12679.full.pdf?with-ds=yes">
Co-clustering directed graphs to discover asymmetries
and directional communities.
</a>
<em>
Proc. National Academy of Sciences (PNAS), 113(45), 12679 - 12684.
</em>
<p>
</p>
</li>
<li>
R. E. Kass, B. S. Caffo, M. Davidian, X. Meng, B. Yu, Nancy Reid* (2016).
<a href="../ps/papers2016/Ten-Simple-Rules.pdf">
Ten simple rules for effective statistical practice.
</a>
<em>
PLoS Comput. Biol., 12(6): e1004961. doi:10.1371/journal.pcbi.1004961
</em>
<p>
</p>
</li>
<li>
Siqi Wu, Antony Joseph, Ann S. Hammonds, Susan E. Celniker, Bin Yu*, and Erwin Frise* (2016).
<a href="../ps/papers2016/staNMF+SI.pdf">
Stability-driven nonnegative matrix factorization to
interpret spatial gene expression and build local
gene networks (with support information).
</a>
<em>
PNAS, pp. 4290 - 4295.
</em>
<p>
</p>
</li>
<li>
A. Bloniarz, C. Wu, B. Yu, A. Talwalkar (2016).
<a href="../ps/papers2016/AISTATS16.pdf">
Supervised neighborhoods for distributed nonparametric regression.
</a>
<em>
Proc. of AISTATS, Barcelona, Spain.
</em>
<p>
</p>
</li>
<li>
B. Yu (2015).
<a href="http://www.odbms.org/2015/04/data-wisdom-for-data-science/">
Data wisdom for data science.
</a>
<em>
Operational Database Management Systems (ODBMS.ORG).
</em>
<p>
</p>
</li>
<li>
A. Bloniarz, H. Liu, C. Zhang, J. Sekhon, and B. Yu* (2015).
<a href="../ps/papers2016/lasso-adj+SI16.pdf">
Lasso adjustments of treatment effect estimates in randomized experiments.
</a>
<em>
PNAS. 113, 7383 - 7390.
</em>
<p>
</p>
</li>
<li>
P. Ma, M. W. Mahoney and B. Yu (2015).
<a href="../ps/papers2015/MaMahoneyYu2015.pdf">
A Statistical Perspective on Algorithmic Leveraging.
</a>
<em>
Journal of Machine Learning Research,
</em>
16, (2015), 861-911.
<p>
</p>
</li>
<li>
T. Moon, Y. Wang, Y. Liu, and B. Yu (2015).
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7047927">
Evaluation of a MISR-based high-resolution aerosol retrieval method using AERONET DRAGON campaign data.
</a>
<em>
IEEE Transactions on Geoscience and Remote Sensing, 53, 4328-4339.
</em>
<p>
</p>
</li>
<li>
B. Yu (2014).
<a href="../ps/papers2014/IMS-pres-address14-yu.pdf">
Let us own data science.
</a>
<a href="https://www.youtube.com/watch?v=92OjsYQJC1U">
video
</a>
<a href="http://bulletin.imstat.org/2014/10/ims-presidential-address-let-us-own-data-science/">
IMS Bulletin
</a>
<em>
Institute of Mathematical Statistics (IMS) Presidental Address, ASC-IMS Joint Co
nference, Sydney, July, 2014.
</em>
<p>
</p>
</li>
<li>
G. Schiebinger, M. J. Wainwright and B. Yu (2014).
<a href="http://arxiv.org/pdf/1404.7552v3.pdf">
The geometry of kernelized spectral clustering.
</a>
<em>
Annals of Statistics, 43, 819-846.
</em>
<p>
</p>
</li>
<li>
L. Miratrix, J. Jia, B. Yu, B. Gawalt, L. El Ghaoui, L. Barnesmoore, S. Clavier (2014).
<a href="../ps/papers2014/CCS14.pdf">
Concise comparative summaries (CCS) of large text corpora with a human experiment.
</a>
<em>
Ann. Applied Statist., 8, 499-529.
</em>
<p>
</p>
</li>
<li>
Y. Benjamini and B. Yu (2014).
<a href="../ps/papers2012/BenjaminiY12.pdf">
The shuttle estimator for explainable variance in fMRI experiments.
</a>
<em>
Annals of Applied Statistics, 7, 2007-2033.
</em>
<p>
</p>
</li>
<li>
D. Bean, P. Bickel, N. El Karoui and B. Yu (2014).
<a href="http://www.pnas.org/content/early/2013/08/08/1307845110.full.pdf+html">
Optimal M-estimation in high-dimensional regression.
</a>
<em>
Proceedings of National Academy of Sciences, 110, 1456314568.
</em>
<p>
</p>
</li>
<li>
N. El Karoui, D. Bean, P. Bickel, C. Lim, and B. Yu (2014).
<a href="http://www.pnas.org/content/early/2013/08/15/1307842110.full.pdf+html">
On robust regression with high-dimensional predictors.
</a>
<em>
Proceedings of National Academy of Sciences, 110, 1455714562.
</em>
<p>
</p>
</li>
<li>
P. Ma, M. W. Mahoney, B. Yu (2014).
<a href="http://arxiv.org/abs/1306.5362">
A Statistical Perspective on Algorithmic Leveraging.
</a>
<em>
Proc. of International Conference on Machine Learning (ICML)
</em>
(This conference paper contains some of preliminary results of the journal submission
<em>
Ma et al. (2015)
</em>
)
<p>
</p>
</li>
<li>
A. Bloniarz, A. Talwalkar, J. Terhorst, M. Jordan, D. Patterson, B. Yu and Y. Song (2014).
<a href="../ps/papers2014/Bloniarzetal14.pdf">
Changepoint Analysis for Efficient Variant Calling.
</a>
<em>
Proc. of RECOMB 2014 (to appear).
</em>
<p>
</p>
</li>
<li>
Tao Shi (2013),
<a href="http://www.yufamily.org/src/ShiTao_AnInterviewWithProfessorBinYu.php?xref=YuFamily_YuBin_interview_cn">
A conversation with Professor Bin Yu
</a>
<em>
International Chinese Statistical Association (ICSA) Bulletin, Vol 25, Issue 2, pp 85-98.
</em>
(
<a href="http://www.statsblogs.com/2013/07/09/a-conversation-with-professor-bin-yu/">
Selected Parts in Statblogs
</a>
)
<p>
</p>
</li>
<li>
A. Joseph and B. Yu (2016).
<a href="../ps/papers2016/reg-spectral16.pdf">
The impact of regularization on spectral clustering.
</a>
<em>
Annals of Statistics. 4, 1765 - 1791.
</em>
<p>
</p>
</li>
<li>
C. Lim and B. Yu (2016).
<a href="../ps/papers2016/ESCV16.pdf">
Estimation Stability with Cross Validation (ESCV)
</a>
<em>
Journal of Computational and Graphical Statistics. 25, 464 - 492.
</em>
<p>
</p>
</li>
<li>
A. S. Hammonds, C. A. Bristow, W. W. Fisher, R. Weiszmann, S. Wu, V. Hartenstein, M. Kellis,
B. Yu, E. Frise, and S. E. Celniker (2013).
<a href="http://genomebiology.com/2013/14/12/R140">
</a>
<a href="../ps/papers2013/Hammondsetal13.pdf">
Spatial expression of transcription factors in Drosophila embryonic organ development.
</a>
<em>
Genome Biology, 14(12), R140.
</em>
<p>
</p>
</li>
<li>
H. Liu and B. Yu (2013).
<a href="../ps/LassoOLSBootstrap13.pdf">
Asymptotic properties of Lasso+mLS and Lasso+Ridge in sparse high-dimensional linear regression.
</a>
<em>
Electron. J. Statist., 7, 312-3169.
</em>
<p>
</p>
</li>
<li>
J. Mairal and B. Yu (2013).
<a href="http://jmlr.org/papers/v14/mairal13a.html">
Supervised Feature Selection in Graphs with Path Coding Penalties and Network Flows.
</a>
<em>
Journal of Machine Learning Research, 14, 2449-2485.
</em>
<p>
</p>
</li>
<li>
Y. Wang, X. Jiang, B. Yu, M. Jiang (2013).
<a href="../ps/papers2013/WangJiangYuJiang2013.pdf">
A Hierarchical Bayesian Approach for Aerosol Retrieval Using MISR Data.
</a>
<em>
J. American Statistical Association, 108, 483-493.
</em>
<p>
</p>
</li>
<li>
Y. He, J. Jia and B. Yu (2013).
<a href="../ps/papers2013/rev-MCMC13.pdf">
Reversible MCMC on Markov equivalence classes of sparse directed acyclic graphs.
</a>
<a href="http://arxiv.org/abs/1209.5860">
</a>
<em>
Annals of Statistics, 41(4), 1742-1779.
</em>
<p>
</p>
</li>
<li>
B. Yu (2013).
<a href="../ps/papers2013/Yu13.pdf">
Stability.
</a>
<em>
Bernoulli, 19 (4), 1484-1500. (Invited paper for the Special Issue commemorating the 300th anniversary of the publication of Jakob Bernoullis Ars Conjectandi in 1712)
</em>
<p>
</p>
</li>
<li>
J. Mairal and B. Yu (2013).
<a>
Discussion on Grouping Strategies and Thresholding for High Dimensional Linear Models
</a>
<em>
Journal of Statistical Planning and Inference, 143, 1451-1453.
</em>
<p>
</p>
</li>
<li>
C. Uhler, G. Raskutti, and P. Buhlmann and B. Yu (2013).
<a href="../ps/papers2013/faithfulness13.pdf">
Geometry of faithfulness assumption in causal inference.
</a>
<em>
Annals of Statistics, 41, 436-463.
</em>
<p>
</p>
</li>
<li>
L. Miratrix, J. Sehkon, and B. Yu (2013).
<a href="../ps/papers2013/post-stratification13.pdf">
Adjusting Treatment Effect Estimates by Post-Stratification in
Randomized Experiments.
</a>
<em>
Journal of Royal Statistical Society, Series B, 75 (part 2), 369-396.
</em>
<p>
</p>
</li>
<li>
J. Jia, K. Rohe and B. Yu (2013)
<a href="../ps/papers2013/lasso-poisson13.pdf">
The Lasso under Poisson-like Heteroscadecity.
</a>
<em>
Statistica Sinica, 23, 99-118.
</em>
<p>
</p>
</li>
<li>
S. Negahban, P. Ravikumar, M. Wainwrigt, and B. Yu (2012)
<a href="../ps/unified-797.pdf">
A unified framework for high-dimensional analysis of
M-estimators with decomposable regularizers.
</a>
<em>
Statistical Science, 27, 538-557.
</em>
<p>
</p>
</li>
<li>
G. Raskutti, M. Wainwrigt, and B. Yu (2012)
<a href="../ps/papers2012/RaskuttiWY12.pdf">
Minimax-optimal rates for sparse additive models over
kernel classes via convex programming.
</a>
<em>
J. Machine Learning Research, 13, 389-427.
</em>
<p>
</p>
</li>
<li>
J. Mairal and B. Yu (2012).
<a href="../ps/Conferencepapers/MairalY12.pdf">
Complexity analysis of the Lasso regularization path.
</a>
<em>
Proc. of International Conference on Machine Learning (ICML) .
</em>
<p>
</p>
</li>
<li>
Yanfeng Gu, Shizhe Wang, Tao Shi, Yinghui Lu, Eugene E. Clothiaux, and Bin Yu (2012).
<a href="../ps/Conferencepapers/GuWSLCY12.pdf">
Multiple-kernel learning-based unmixing algorithm for estimation of cloud fractions with MODIS and CLOUDSAT data.
</a>
<em>
Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGRSS).
</em>
<p>
</p>
</li>
<li>
S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu, J. L. Gallant (2011).
<a href="../ps/papers2011/NishimotoVNBYG11.pdf">
Reconstructing visual experiences from brain activity evoked by natural movies.
</a>
<em>
Current Biology, 21(19), 1641-1646.
</em>
<a href="https://sites.google.com/site/gallantlabucb/publications/nishimoto-et-al-2011">
related videos
</a>
<p>
</p>
</li>
<li>
P. Ravikumar, M. Wainwright, G. Raskutti, B. Yu (2011).
<a href="../ps/papers2011/RavikumarWRY11.pdf">
High-dimensional covariance estimation by minimizing l1-penalized log-determinant divergence.
</a>
<em>
Electronic Journal of Statistics, 5, 935-980.
</em>
<p>
</p>
</li>
<li>
G. Raskutti, M. Wainwright, B. Yu (2011).
<a href="../ps/papers2011/RaskuttiWainwrightYu2011.pdf">
Minimax rates of estimation for high-dimensional linear regression over lq-balls.
</a>
<em>
IEEE Trans. Inform. Th., 57(10), 6976-6994.
</em>
<p>
</p>
</li>
<li>
K. Rohe, S. Chatterjee, and B. Yu (2011).
<a href="../ps/papers2011/RoheCY11.pdf">
Spectral clustering and the high-dimensional Stochastic Block Model.
</a>
<em>
Annals of Statistics, 39 (4), 1878-1915
</em>
<p>
</p>
</li>
<li>
V. Q. Vu, P. Ravikumar, T. Naselaris, K. N. Kay, J. L. Gallant, B. Yu* (2011).
<a href="http://arxiv.org/pdf/1104.2805.pdf">
Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models.
</a>
<em>
Annals of Applied Statistics, 5, 1150-1182.
(*First senior author as last author in biology tradition)
</em>
<p>
</p>
</li>
<li>
S. N. Pakzad, G. Rocha, and B. Yu (2011).
<a>
Distributed modal identification by regularized auto regressive models.
</a>
<em>
International Journal of Systems Science, 42, 1473-1489.
</em>
<p>
</p>
</li>
<li>
J. Yousafzai, P. Sollich, Z. Cvetkovic, and B. Yu (2011).
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5618550">
Combined Features and Kernel Design for Robust Phoneme Classification Using Support Vector Machines.
</a>
<em>
IEEE Trans. Audio, Speech and Language Processing (to appear).
64.
</em>
<p>
</p>
</li>
<li>
X. Dai, J. Jia, B. Yu, El Ghaoui (2011)
<a href="http://www.eecs.berkeley.edu/~elghaoui/Pubs/icsc2011.pdf">
SBA-term: Sparse Bilingual Association for terms.
</a>
<em>
Proc. International Conference on Semantic Computing.
</em>
<p>
</p>
</li>
<li>
B. Yu (2011).
<a href="http://www.stat.berkeley.edu/~binyu/ps/Conferencepapers/Yu11.pdf">
Asymptotics and Coding Theory: One of the n - 1 Dimensions
of Terry.
</a>
<em>
In Selected Works of Terry Speed (ed. S. Duoit), pp. 33-36, Springer.
</em>
<p>
</p>
</li>
<li>
B. Yu (2010).
<a href="../ps/papers2010/Yu10.pdf">
Remembering Leo.
</a>
<em>
Annals of Applied Statistics, 4(4), 1657-1659.
</em>
<p>
</p>
</li>
<li>
J. Jia, Y. Benjamini, C. Lim, G. Raskutti, B. Yu (2010).
<a href="../ps/papers2010/JiaBLRY10.pdf">
Comment on "Envelope models for parsimonious and efficient multivariate linear regression" by R. D. Cook, B. Li, and F. Chiaromonte.
</a>
<em>
Statistica Sinica, 20, 961-967.
</em>
<p>
</p>
</li>
<li>
G. Raskutti, M. Wainwrigt, and B. Yu (2010)
<a href="../ps/papers2010/RaskuttiWY10.pdf">
Restricted Eigenvalue Properties for Correlated Gaussian Designs.
</a>