forked from borusyak/did_imputation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdid_imputation.ado
683 lines (623 loc) · 27.5 KB
/
did_imputation.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
*! did_imputation: Treatment effect estimation and pre-trend testing in staggered adoption diff-in-diff designs with an imputation approach of Borusyak, Jaravel, and Spiess (2021)
*! Version: May 21, 2021
*! Author: Kirill Borusyak
*! Recent updates: slightly adjusted SE in presence of estimation weights
*! Please check the latest version at: https://github.com/borusyak/did_imputation/
*! Citation: Borusyak, Jaravel, and Spiess, "Revisiting Event Study Designs: Robust and Efficient Estimation" (2021)
cap program drop did_imputation
program define did_imputation, eclass sortpreserve
syntax varlist(min=4 max=4) [if] [in] [aw iw fw] [, wtr(varlist) sum Horizons(numlist >=0) ALLHorizons HBALance minn(integer 30) shift(integer 0) ///
AUTOSample SAVEestimates(name) SAVEWeights LOADWeights(varlist) ///
AVGEFFectsby(varlist) fe(string) Controls(varlist) UNITControls(varlist) TIMEControls(varlist) ///
CLUSter(varname) tol(real 0.000001) maxit(integer 100) verbose nose PREtrends(integer 0) delta(integer 0)]
qui {
if ("`verbose'"!="") noi di "Starting"
ms_get_version reghdfe, min_version("5.7.3")
ms_get_version ftools, min_version("2.37.0")
// Part 1: Initialize
marksample touse, novarlist
if ("`controls'"!="") markout `touse' `controls'
if ("`unitcontrols'"!="") markout `touse' `unitcontrols'
if ("`timecontrols'"!="") markout `touse' `timecontrols'
// if ("`timeinteractions'"!="") markout `touse' `timeinteractions'
if ("`cluster'"!="") markout `touse' `cluster'
if ("`saveestimates'"!="") confirm new variable `saveestimates'
if ("`saveweights'"!="") confirm new variable `saveweights'
if ("`verbose'"!="") noi di "#00"
tempvar wei
if ("`weight'"=="") {
gen `wei' = 1
local weiexp ""
}
else {
gen `wei' `exp'
replace `wei' = . if `wei'==0
markout `touse' `wei'
if ("`sum'"=="") { // unless want a weighted sum, normalize the weights to have reasonable scale, just in case for better numerical convergence
sum `wei' if `touse'
replace `wei' = `wei' * r(N)/r(sum)
}
local weiexp "[`weight'=`wei']"
}
local debugging = ("`verbose'"=="verbose")
tokenize `varlist'
local Y `1'
local i `2'
local t `3'
local ei `4'
markout `touse' `Y' `i' `t' // missing `ei' is fine, indicates the never-treated group
tempvar D K
// Process FE
if ("`fe'"=="") local fe `i' `t'
if ("`fe'"==".") {
tempvar constant
gen `constant' = 1
local fe `constant'
}
local fecount = 0
foreach fecurrent of local fe {
if (("`fecurrent'"!="`i'" | "`unitcontrols'"=="") & ("`fecurrent'"!="`t'" | "`timecontrols'"=="")) { // skip i and t if there are corresponding interacted controls
local ++fecount
local fecopy `fecopy' `fecurrent'
local fe`fecount' = subinstr("`fecurrent'","#"," ",.)
markout `touse' `fe`fecount''
}
}
local fe `fecopy'
// Figure out the delta
if (`delta'==0) {
cap tsset, noquery
if (_rc==0) {
if (r(timevar)=="`t'") {
local delta = r(tdelta)
if (`delta'!=1) noi di "Note: setting delta = `delta'"
}
}
else local delta = 1
}
if (`delta'<=0 | mi(`delta')) {
di as error "A problem has occured with determining delta. Please specify it explicitly."
error 198
}
if (`debugging') noi di "#1"
gen `K' = (`t'-`ei'+`shift')/`delta' if `touse'
cap assert mi(`K') | mod(`K',1)==0
if (_rc!=0) {
di as error "There are non-integer values of the number of periods since treatment. Please check the time dimension of your data."
error 198
}
gen `D' = (`K'>=0 & !mi(`K')) if `touse'
if ("`avgeffectsby'"=="") local avgeffectsby = "`ei' `t'"
if ("`cluster'"=="") local cluster = "`i'"
if ("`autosample'"!="" & "`sum'"!="") {
di as error "Autosample cannot be combined with sum. Please specify the sample explicitly"
error 184
}
if ("`autosample'"!="" & "`hbalance'"!="") {
di as error "Autosample cannot be combined with hbalance. Please specify the sample explicitly"
error 184
}
if (`debugging') noi di "#2 `fe'"
// Part 2: Prepare the variables with weights on the treated units (e.g. by horizon)
local wtr_count : word count `wtr'
if (`wtr_count'==0) { // if no wtr, use the simple average
tempvar wtr
gen `wtr' = 1 if (`touse') & (`D'==1)
local wtrnames tau
local wtr_count = 1
}
else { // create copies of the specified variables so that I can modify them later (adjust for weights, normalize)
if (`wtr_count'==1) local wtrnames tau
else local wtrnames "" // will fill it in the loop
local wtr_new_list
foreach v of local wtr {
tempvar `v'_new
gen ``v'_new' = `v' if `touse'
local wtr_new_list `wtr_new_list' ``v'_new'
if (`wtr_count'>1) local wtrnames `wtrnames' tau_`v'
}
local wtr `wtr_new_list'
}
* Horizons
if (("`horizons'"!="" | "`allhorizons'"!="") & `wtr_count'>1) {
di as error "Options horizons and allhorizons cannot be combined with multiple wtr variables"
error 184
}
if ("`allhorizons'"!="") {
if ("`horizons'"!="") {
di as error "Options horizons and allhorizons cannot be combined"
error 184
}
if ("`hbalance'"!="") di as error "Warning: combining hbalance with allhorizons may lead to very restricted samples. Consider specifying a smaller subset of horizons."
levelsof `K' if `touse' & `D'==1 & `wtr'!=0 & !mi(`wtr'), local(horizons)
}
if ("`horizons'"!="") { // Create a weights var for each horizon
if ("`hbalance'"=="hbalance") {
// Put zero weight on units for which we don't have all horizons
tempvar in_horizons num_horizons_by_i min_weight_by_i max_weight_by_i
local n_horizons = 0
gen `in_horizons'=0 if `touse'
foreach h of numlist `horizons' {
replace `in_horizons'=1 if (`K'==`h') & `touse'
local ++n_horizons
}
egen `num_horizons_by_i' = sum(`in_horizons') if `in_horizons'==1, by(`i')
replace `wtr' = 0 if `touse' & (`in_horizons'==0 | (`num_horizons_by_i'<`n_horizons'))
// Now check whether wtr and wei weights are identical across periods
egen `min_weight_by_i' = min(`wtr'*`wei') if `touse' & `in_horizons'==1 & (`num_horizons_by_i'==`n_horizons'), by(`i')
egen `max_weight_by_i' = max(`wtr'*`wei') if `touse' & `in_horizons'==1 & (`num_horizons_by_i'==`n_horizons'), by(`i')
cap assert `max_weight_by_i'<=1.000001*`min_weight_by_i' if `touse' & `in_horizons'==1 & (`num_horizons_by_i'==`n_horizons')
if (_rc>0) {
di as error "Weights must be identical across periods for units in the balanced sample"
error 498
}
drop `in_horizons' `num_horizons_by_i' `min_weight_by_i' `max_weight_by_i'
}
foreach h of numlist `horizons' {
tempvar wtr`h'
gen `wtr`h'' = `wtr' * (`K'==`h')
local horlist `horlist' `wtr`h''
local hornameslist `hornameslist' tau`h'
}
local wtr `horlist'
local wtrnames `hornameslist'
}
if (`debugging') noi di "List: `wtr'"
if (`debugging') noi di "Namelist: `wtrnames'"
if ("`sum'"=="") { // If computing the mean, normalize each wtr variable such that sum(wei*wtr*(D==1))==1
foreach v of local wtr {
cap assert `v'>=0 if (`touse') & (`D'==1)
if (_rc!=0) {
di as error "Negative wtr weights are only allowed if the sum option is specified"
error 9
}
sum `v' `weiexp' if (`touse') & (`D'==1)
replace `v' = `v'/r(sum) // r(sum)=sum(`v'*`weiexp')
}
}
// Part 3: Run the imputation regression and impute the controls for treated obs
if ("`unitcontrols'"!="") local fe_i `i'##c.(`unitcontrols')
if ("`timecontrols'"!="") local fe_t `t'##c.(`timecontrols')
if (`debugging') noi di "#4: reghdfe `Y' `controls' if (`D'==0) & (`touse') `weiexp', a(`fe_i' `fe_t' `fe', savefe) nocon keepsing"
count if (`D'==0) & (`touse')
if (r(N)==0) {
if (`shift'==0) noi di as error "There are no untreated observations, i.e. those with `t'<`ei' or mi(`ei')."
else noi di as error "There are no untreated observations, i.e. those with `t'<`ei'-`shift' or mi(`ei')."
noi di as error "Please double-check the period & event time variables."
noi di
error 459
}
if (`debugging') noi reghdfe `Y' `controls' if (`D'==0) & (`touse') `weiexp', a(`fe_i' `fe_t' `fe', savefe) nocon keepsing
else reghdfe `Y' `controls' if (`D'==0) & (`touse') `weiexp', a(`fe_i' `fe_t' `fe', savefe) nocon keepsing verbose(-1)
// nocon makes the constant recorded in the first FE
// keepsing is important for when there are units available in only one period (e.g. treated in period 2) which are fine
// verbose(-1) suppresses singleton warnings
* Extrapolate the controls to the treatment group and construct Y0
if (`debugging') noi di "#5"
tempvar Y0
gen `Y0' = 0 if `touse'
local feset = 1 // indexing as in reghdfe
if ("`unitcontrols'"!="") {
recover __hdfe`feset'__*, from(`i')
replace `Y0' = `Y0' + __hdfe`feset'__ if `touse'
local j=1
foreach v of local unitcontrols {
replace `Y0' = `Y0'+__hdfe`feset'__Slope`j'*`v' if `touse'
local ++j
}
local ++feset
}
if ("`timecontrols'"!="") {
recover __hdfe`feset'__*, from(`t')
replace `Y0' = `Y0' + __hdfe`feset'__ if `touse'
local j=1
foreach v of local timecontrols {
replace `Y0' = `Y0'+__hdfe`feset'__Slope`j'*`v' if `touse'
local ++j
}
local ++feset
}
forvalues feindex = 1/`fecount' { // indexing as in the fe option
recover __hdfe`feset'__, from(`fe`feindex'')
replace `Y0' = `Y0' + __hdfe`feset'__ if `touse'
local ++feset
}
foreach v of local controls {
replace `Y0' = `Y0'+_b[`v']*`v' if `touse'
}
if (`debugging') noi di "#7"
if ("`saveestimates'"=="") tempvar effect
else {
local effect `saveestimates'
cap confirm var `effect', exact
if (_rc==0) drop `effect'
}
gen `effect' = `Y' - `Y0' if (`D'==1) & (`touse')
drop __hdfe*
if (`debugging') noi di "#8"
// Check if imputation was successful, and apply autosample
* For FE can just check they have been imputed everywhere
tempvar need_imputation
gen byte `need_imputation' = 0
foreach v of local wtr {
replace `need_imputation'=1 if `touse' & `D'==1 & `v'!=0 & !mi(`v')
}
replace `touse' = (`touse') & (`D'==0 | `need_imputation') // View as e(sample) all controls + relevant treatments only
count if mi(`effect') & `need_imputation'
if r(N)>0 {
if (`debugging') noi di "#8b `wtr'"
cap drop cannot_impute
gen byte cannot_impute = mi(`effect') & `need_imputation'
count if cannot_impute==1
if ("`autosample'"=="") {
noi di as error "Could not impute FE for " r(N) " observations. Those are saved in the cannot_impute variable. Use the autosample option if you would like those observations to be dropped from the sample automatically."
error 198
}
else { // drop the subsample where it didn't work and renormalize all wtr variables
assert "`sum'"==""
local j = 1
qui foreach v of local wtr {
if (`debugging') noi di "#8d sum `v' `weiexp' if `touse' & `D'==1"
local outputname : word `j' of `wtrnames'
sum `v' `weiexp' if `touse' & `D'==1 // just a test that it added up to one first
if (`debugging') noi di "#8dd " r(sum)
assert abs(r(sum)-1)<10^-5 | abs(r(sum))<10^-5 // if this variable is always zero/missing, then the sum would be zero
count if `touse' & `D'==1 & cannot_impute==1 & `v'!=0 & !mi(`v')
local n_cannot_impute = r(N) // count the dropped units
if (`n_cannot_impute'>0) {
sum `v' `weiexp' if `touse' & `D'==1 & cannot_impute!=1 & `v'!=0 & !mi(`v') // those still remaining
if (r(N)==0) {
replace `v' = 0 if `touse' & `D'==1 // totally drop the wtr
local autosample_drop `autosample_drop' `outputname'
}
else {
replace `v' = `v'/r(sum) if `touse' & `D'==1 & cannot_impute!=1
replace `v' = 0 if cannot_impute==1
local autosample_trim `autosample_trim' `outputname'
}
}
local ++j
}
if (`debugging') noi di "#8e"
replace `touse' = `touse' & cannot_impute!=1
if ("`autosample_drop'"!="") noi di "Warning: suppressing the following coefficients because FE could not be imputed for any units: `autosample_drop'."
if ("`autosample_trim'"!="") noi di "Warning: part of the sample was dropped for the following coefficients because FE could not be imputed: `autosample_trim'."
}
}
* Compare model degrees of freedom [does not work correctly for timecontrols and unitcontrols, need to recompute]
if (`debugging') noi di "#8c"
tempvar tnorm
gen `tnorm' = rnormal() if (`touse') & (`D'==0 | `need_imputation')
reghdfe `tnorm' `controls' if (`D'==0) & (`touse'), a(`fe_i' `fe_t' `fe') nocon keepsing verbose(-1)
local df_m_control = e(df_m) // model DoF corresponding to explicitly specified controls
local df_a_control = e(df_a) // DoF for FE
reghdfe `tnorm' `controls' , a(`fe_i' `fe_t' `fe') nocon keepsing verbose(-1)
local df_m_full = e(df_m)
local df_a_full = e(df_a)
if (`debugging') noi di "#9 `df_m_control' `df_m_full' `df_a_control' `df_a_full'"
if (`df_m_control'<`df_m_full') {
di as error "Could not run imputation for some observations because some controls are collinear in the D==0 subsample but not in the full sample"
if ("`autosample'"!="") di as error "Please note that autosample does not know how to deal with this. Please correct the sample manually"
error 481
}
if (`df_a_control'<`df_a_full') {
di as error "Could not run imputation for some observations because some absorbed variables/FEs are collinear in the D==0 subsample but not in the full sample"
if ("`autosample'"!="") di as error "Please note that autosample does not know how to deal with this. Please correct the sample manually"
error 481
}
// Part 4: Drop wtr which have an effective sample size (for absolute weights of treated obs) that is too small
local droplist
tempvar abswei
gen `abswei' = .
local j = 1
foreach v of local wtr {
local outputname : word `j' of `wtrnames'
replace `abswei' = abs(`v') if (`touse') & (`D'==1)
sum `v' `weiexp'
if (r(sum)!=0) { // o/w dropped earlier
replace `abswei' = (`v'*`wei'/r(sum))^2 // !! Probably doesn't work with fw, not sure about pw; probably ok for aw
sum `abswei'
if (r(sum)>1/`minn') { // HHI is large => effective sample size is too small
local droplist `droplist' `outputname'
replace `v' = 0 if `touse'
}
}
else local droplist `droplist' `outputname' // not ideal: should report those with no data at all separately (maybe together with autosample_drop?)
local ++j
}
if ("`droplist'"!="") noi di "WARNING: suppressing the following coefficients from estimation because of insufficient effective sample size: `droplist'. To report them nevertheless, set the minn option to a smaller number or 0, but keep in mind that the estimates may be unreliable and their SE may be downward biased."
if (`debugging') noi di "#9.5"
// Part 5A: initialize the matrices
local tau_num : word count `wtr'
if (`debugging') noi di `tau_num'
if (`debugging') noi di `"`wtr' | `wtrnames'"'
tempname b Nt
matrix `b' = J(1,`tau_num'+`pretrends',.)
matrix `Nt' = J(1,`tau_num',.)
if (`debugging') noi di "#9.6"
// Part 5: pre-tests
if (`pretrends'>0) {
tempname pretrendvar
tempvar preresid
forvalues h = 1/`pretrends' {
gen `pretrendvar'`h' = (`K'==-`h') if `touse'
local pretrendvars `pretrendvars' `pretrendvar'`h'
local prenames `prenames' pre`h'
}
if (`debugging') noi di "#9A reghdfe `Y' `controls' `pretrendvars' `weiexp' if `touse' & `D'==0, a(`fe_i' `fe_t' `fe') cluster(`cluster') resid(`preresid')"
reghdfe `Y' `controls' `pretrendvars' `weiexp' if `touse' & `D'==0, a(`fe_i' `fe_t' `fe') cluster(`cluster') resid(`preresid')
forvalues h = 1/`pretrends' {
matrix `b'[1,`tau_num'+`h'] = _b[`pretrendvar'`h']
local preb`h' = _b[`pretrendvar'`h']
local prese`h' = _se[`pretrendvar'`h']
}
local pre_df = e(df_r)
if (`debugging') noi di "#9B"
local list_pre_weps
if ("`se'"!="nose") { // Construct weights behind pre-trend estimaters. Could speed up by residualizing all relevant vars on FE first
matrix pre_b = e(b)
if (`debugging') noi di "#9C1"
matrix pre_V = e(V)
if (`debugging') noi di "#9C2"
local dof_adj = (e(N)-1)/(e(N)-e(df_m)-e(df_a)) * (e(N_clust)/(e(N_clust)-1)) // that's how regdfhe does dof adjustment with clusters, see reghdfe_common.mata line 634
if (`debugging') noi di "#9C3"
local pretrendvars "" // drop omitted vars from pretrendvars (so that residualization works correctly when computing SE)
forvalues h = 1/`pretrends' {
if (`preb`h''!=0 | `prese`h''!=0) local pretrendvars `pretrendvars' `pretrendvar'`h'
}
if (`debugging') noi di "#9C4 `pretrendvars'"
tempvar preweight
forvalues h = 1/`pretrends' {
if (`debugging') noi di "#9D `h'"
tempvar preeps_w`h'
if (`preb`h''==0 & `prese`h''==0) gen `preeps_w`h'' = 0 // omitted
else {
local rhsvars = subinstr("`pretrendvars' ","`pretrendvar'`h' ","",.) // space at the end so that it works for the last var too
reghdfe `pretrendvar'`h' `controls' `rhsvars' `weiexp' if `touse' & `D'==0, a(`fe_i' `fe_t' `fe') cluster(`cluster') resid(`preweight')
replace `preweight' = `preweight' * `wei'
sum `preweight' if `touse' & `D'==0 & `pretrendvar'`h'==1
replace `preweight' = `preweight'/r(sum)
egen `preeps_w`h'' = total(`preweight' * `preresid') if `touse', by(`cluster')
replace `preeps_w`h'' = `preeps_w`h'' * sqrt(`dof_adj')
drop `preweight'
}
local list_pre_weps `list_pre_weps' `preeps_w`h''
}
}
if (`debugging') noi di "#9.75"
}
// Part 6: Compute the effects
count if `D'==0 & `touse'
local Nc = r(N)
count if `touse'
local Nall = r(N)
tempvar effectsum
gen `effectsum' = .
local j = 1
foreach v of local wtr {
local outputname : word `j' of `wtrnames'
if (`debugging') noi di "Reporting `j' `v' `outputname'"
replace `effectsum' = `effect'*`v'*`wei' if (`D'==1) & (`touse')
sum `effectsum'
//ereturn scalar `outputname' = r(sum)
matrix `b'[1,`j'] = r(sum)
count if `D'==1 & `touse' & `v'!=0 & !mi(`v')
matrix `Nt'[1,`j'] = r(N)
local ++j
}
if (`debugging') noi di "#10"
// Part 7: Report SE [can add a check that there are no conflicts in the residuals]
if ("`se'"!="nose") {
cap drop __w_*
tempvar tag_clus resid
egen `tag_clus' = tag(`cluster') if `touse'
gen `resid' = `Y' - `Y0' if (`touse') & (`D'==0)
if ("`loadweights'"=="") {
local weightvars = ""
foreach vn of local wtrnames {
local weightvars `weightvars' __w_`vn'
}
if (`debugging') noi di "#11a imputation_weights `i' `t' `D' , touse(`touse') wtr(`wtr') saveweights(`weightvars') wei(`wei') fe(`fe') controls(`controls') unitcontrols(`unitcontrols') timecontrols(`timecontrols') tol(`tol') maxit(`maxit')"
noi imputation_weights `i' `t' `D', touse(`touse') wtr(`wtr') saveweights(`weightvars') wei(`wei') ///
fe(`fe') controls(`controls') unitcontrols(`unitcontrols') timecontrols(`timecontrols') ///
tol(`tol') maxit(`maxit') `verbose'
local Niter = r(iter)
}
else {
local weightvars `loadweights'
// Here can verify the supplied weights
}
local list_weps = ""
local j = 1
foreach v of local wtr { // to do: speed up by sorting for all wtr together
if (`debugging') noi di "#11b `v'"
local weightvar : word `j' of `weightvars'
tempvar clusterweight smartweight avgtau eps_w`j' // Need to regenerate every time in case the weights on treated are in conflict
// egen `sqshares' = pc(`wei'*`v'^2) if (`touse') & (`D'==1), prop by(`avgeffectsby') // Old version
egen `clusterweight' = total(`wei'*`v') if `touse' & (`D'==1), by(`cluster' `avgeffectsby')
egen `smartweight' = pc(`clusterweight' * `wei' * `v') if `touse' & (`D'==1), prop by(`avgeffectsby')
replace `smartweight' = 0 if mi(`smartweight') & `touse' & (`D'==1) // if the denominator is zero, this avgtau won't matter
egen `avgtau' = sum(`effect'*`smartweight') if (`touse') & (`D'==1), by(`avgeffectsby')
replace `resid' = `effect'-`avgtau' if (`touse') & (`D'==1)
egen `eps_w`j'' = sum(`wei'*`weightvar'*`resid') if `touse', by(`cluster')
local list_weps `list_weps' `eps_w`j''
drop `clusterweight' `smartweight' `avgtau'
local ++j
}
if (`debugging') noi di "11c"
tempname V
if (`debugging') noi di "11d `list_weps' `list_pre_weps'"
matrix accum `V' = `list_weps' `list_pre_weps' if `tag_clus', nocon
if (`debugging') noi di "11e `wtrnames' `prenames'"
matrix rownames `V' = `wtrnames' `prenames'
matrix colnames `V' = `wtrnames' `prenames'
if ("`saveweights'"=="" & "`loadweights'"=="") drop __w_*
}
// Part 8: report everything
if (`debugging') noi di "#12"
matrix colnames `b' = `wtrnames' `prenames'
matrix colnames `Nt' = `wtrnames'
ereturn post `b' `V', esample(`touse') depname(`Y') obs(`Nall')
ereturn matrix Nt = `Nt'
ereturn scalar Nc = `Nc'
ereturn local depvar `Y'
ereturn local cmd did_imputation
ereturn local droplist `droplist'
ereturn local autosample_drop `autosample_drop'
ereturn local autosample_trim `autosample_trim'
if ("`Niter'"!="") ereturn scalar Niter = `Niter'
if (`pretrends'>0 & "`se'"!="nose") {
test `prenames', df(`pre_df')
ereturn scalar pre_F = r(F)
ereturn scalar pre_p = r(p)
ereturn scalar pre_df = `pre_df'
}
}
_coef_table_header
ereturn display
end
// Additional program that computes the weights corresponding to the imputation estimator and saves them in a variable
cap program drop imputation_weights
program define imputation_weights, rclass sortpreserve
syntax varlist(min=3 max=3), touse(varname) wtr(varlist) SAVEWeights(namelist) wei(varname) ///
[tol(real 0.000001) maxit(integer 1000) fe(string) Controls(varlist) UNITControls(varlist) TIMEControls(varlist) verbose]
// Weights of the imputation procedure given wtr for controls = - X0 * (X0'X0)^-1 * X1' * wtr but we get them via iterative procedure
// k<0 | k==. is control
// Observation weights are in wei; wtr should be specified BEFORE applying the wei, and the output is before applying them too, i.e. estimator = sum(wei*saveweights*Y)
qui {
// Part 1: Initialize
local debugging = ("`verbose'"=="verbose")
if (`debugging') noi di "#IW1"
tokenize `varlist'
local i `1'
local t `2'
local D `3'
local wcount : word count `wtr'
local savecount : word count `saveweights'
assert `wcount'==`savecount'
forvalues j = 1/`wcount' {
local wtr_j : word `j' of `wtr'
local saveweights_j : word `j' of `saveweights'
gen `saveweights_j' = `wtr_j'
replace `saveweights_j' = 0 if mi(`saveweights_j') & `touse'
tempvar copy`saveweights_j'
gen `copy`saveweights_j'' = `saveweights_j'
}
local fecount = 0
foreach fecurrent of local fe {
local ++fecount
local fe`fecount' = subinstr("`fecurrent'","#"," ",.)
}
if (`debugging') noi di "#IW2"
// Part 2: Demean & construct denom for weight updating
if ("`unitcontrols'"!="") {
tempvar N0i
egen `N0i' = sum(`wei') if (`touse') & `D'==0, by(`i')
}
if ("`timecontrols'"!="") {
tempvar N0t
egen `N0t' = sum(`wei') if (`touse') & `D'==0, by(`t')
}
forvalues feindex = 1/`fecount' {
tempvar N0fe`feindex'
egen `N0fe`feindex'' = sum(`wei') if (`touse') & `D'==0, by(`fe`feindex'')
}
foreach v of local controls {
tempvar dm_`v' c`v'
sum `v' [aw=`wei'] if `D'==0 & `touse' // demean such that the mean is zero in the control sample
gen `dm_`v'' = `v'-r(mean) if `touse'
egen `c`v'' = sum(`wei' * `dm_`v''^2) if `D'==0 & `touse'
}
foreach v of local unitcontrols {
tempvar u`v' dm_u`v' s_u`v'
egen `s_u`v'' = pc(`wei') if `D'==0 & `touse', by(`i') prop
egen `dm_u`v'' = sum(`s_u`v'' * `v') if `touse', by(`i') // this automatically includes it in `D'==1 as well
replace `dm_u`v'' = `v' - `dm_u`v'' if `touse'
egen `u`v'' = sum(`wei' * `dm_u`v''^2) if `D'==0 & `touse', by(`i')
drop `s_u`v''
}
foreach v of local timecontrols {
tempvar t`v' dm_t`v' s_t`v'
egen `s_t`v'' = pc(`wei') if `D'==0 & `touse', by(`t') prop
egen `dm_t`v'' = sum(`s_t`v'' * `v') if `touse', by(`t') // this automatically includes it in `D'==1 as well
replace `dm_t`v'' = `v' - `dm_t`v'' if `touse'
egen `t`v'' = sum(`wei' * `dm_t`v''^2) if `D'==0 & `touse', by(`t')
drop `s_t`v''
}
if (`debugging') noi di "#IW3"
// Part 3: Iterate
local it = 0
local keepiterating `saveweights'
tempvar delta
gen `delta' = 0
while (`it'<`maxit' & "`keepiterating'"!="") {
if (`debugging') noi di "#IW it `it': `keepiterating'"
// Simple controls
foreach v of local controls {
update_weights `dm_`v'' , w(`keepiterating') wei(`wei') d(`D') touse(`touse') denom(`c`v'')
}
// Unit-interacted continuous controls
foreach v of local unitcontrols {
update_weights `dm_u`v'' , w(`keepiterating') wei(`wei') d(`D') touse(`touse') denom(`u`v'') by(`i')
}
if ("`unitcontrols'"!="") update_weights , w(`keepiterating') wei(`wei') d(`D') touse(`touse') denom(`N0i') by(`i') // could speed up a bit by skipping this if we have i#something later
// Time-interacted continuous controls
foreach v of local timecontrols {
update_weights `dm_t`v'' , w(`keepiterating') wei(`wei') d(`D') touse(`touse') denom(`t`v'') by(`t')
}
if ("`timecontrols'"!="") update_weights , w(`keepiterating') wei(`wei') d(`D') touse(`touse') denom(`N0t') by(`t') // could speed up a bit by skipping this if we have t#something later
// FEs
forvalues feindex = 1/`fecount' {
update_weights , w(`keepiterating') wei(`wei') d(`D') touse(`touse') denom(`N0fe`feindex'') by(`fe`feindex'')
}
// Check for which coefs the weights have changed, keep iterating for them
local newkeepit
foreach w of local keepiterating {
replace `delta' = abs(`w'-`copy`w'')
sum `delta' if `D'==0 & `touse'
if (`debugging') noi di "#IW it `it' `w' " r(sum)
if (r(sum)>`tol') local newkeepit `newkeepit' `w'
replace `copy`w'' = `w'
}
local keepiterating `newkeepit'
local ++it
}
if ("`keepiterating'"!="") {
noi di as error "Convergence of standard errors is not achieved for coefs: `keepiterating'."
noi di as error "Try increasing the tolerance, the number of iterations, or use the nose option for the point estimates without SE."
error 430
}
return scalar iter = `it'
}
end
cap program drop update_weights // warning: intentionally destroys sorting
program define update_weights, rclass
syntax [varname(default=none)] , w(varlist) wei(varname) d(varname) touse(varname) denom(varname) [by(varlist)]
// varlist = variable on which to residualize (if empty, a constant is assumed, as for any FE) [for now only one is max!]
// w = variable storing the weights to be updated
// wei = observation weights
// touse = variable defining sample
// denom = variable storing sum(`wei'*`varlist'^2) if `d'==0, by(`by')
qui {
tempvar sumw
tokenize `varlist'
if ("`1'"=="") local 1 = "1"
if ("`by'"!="") sort `by'
foreach w_j of local w {
noi di "#UW 5 `w_j': `1' by(`by') "
egen `sumw' = total(`wei' * `w_j' * `1') if `touse', by(`by')
replace `w_j' = `w_j'-`sumw'*`1'/`denom' if `d'==0 & `denom'!=0 & `touse'
assert !mi(`w_j') if `touse'
drop `sumw'
}
}
end
// When there is a variable that only varies by `from' but is missing for some observations, fill in its missing values wherever possible
cap program drop recover
program define recover, sortpreserve
syntax varlist, from(varlist)
foreach var of local varlist {
gsort `from' -`var'
by `from' : replace `var' = `var'[1] if mi(`var')
}
end