-
Notifications
You must be signed in to change notification settings - Fork 22
/
app.py
206 lines (188 loc) · 8.52 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
import os
import torch
from torchvision import transforms
from lavis.processors import transforms_video
from lavis.datasets.data_utils import load_video_demo
from lavis.processors.blip_processors import ToUint8, ToTHWC
from lavis.models.sevila_models.sevila import SeViLA
from typing import Optional
import warnings
# model config
img_size = 224
num_query_token = 32
t5_model = 'google/flan-t5-xl'
drop_path_rate = 0
use_grad_checkpoint = False
vit_precision = "fp16"
freeze_vit = True
prompt = ''
max_txt_len = 77
answer_num = 5
apply_lemmatizer = False
task = 'freeze_loc_freeze_qa_vid'
# prompt
LOC_propmpt = 'Does the information within the frame provide the necessary details to accurately answer the given question?'
QA_prompt = 'Considering the information presented in the frame, select the correct answer from the options.'
# processors config
mean = (0.48145466, 0.4578275, 0.40821073)
std = (0.26862954, 0.26130258, 0.27577711)
normalize = transforms.Normalize(mean, std)
image_size = img_size
transform = transforms.Compose([ToUint8(), ToTHWC(), transforms_video.ToTensorVideo(), normalize])
print('Model Loading \nLoading the SeViLA model can take a few minutes (typically 2-3).')
sevila = SeViLA(
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
t5_model=t5_model,
prompt=prompt,
max_txt_len=max_txt_len,
apply_lemmatizer=apply_lemmatizer,
frame_num=4,
answer_num=answer_num,
task=task,
)
sevila.load_checkpoint(url_or_filename='https://huggingface.co/Shoubin/SeViLA/resolve/main/sevila_pretrained.pth')
print('Model Loaded')
ANS_MAPPING = {0 : 'A', 1 : 'B', 2 : 'C', 3 : 'D', 4 : 'E'}
# os.mkdir('video')
def sevila_demo(video,
question,
option1, option2, option3,
video_frame_num,
keyframe_num):
if torch.cuda.is_available():
device = 0
else:
device = 'cpu'
global sevila
if device == "cpu":
sevila = sevila.float()
else:
sevila = sevila.to(int(device))
vpath = video
raw_clip, indice, fps, vlen = load_video_demo(
video_path=vpath,
n_frms=int(video_frame_num),
height=image_size,
width=image_size,
sampling="uniform",
clip_proposal=None
)
clip = transform(raw_clip.permute(1,0,2,3))
clip = clip.float().to(int(device))
clip = clip.unsqueeze(0)
# check
if option1[-1] != '.':
option1 += '.'
if option2[-1] != '.':
option2 += '.'
if option3[-1] != '.':
option3 += '.'
option_dict = {0:option1, 1:option2, 2:option3}
options = 'Option A:{} Option B:{} Option C:{}'.format(option1, option2, option3)
text_input_qa = 'Question: ' + question + ' ' + options + ' ' + QA_prompt
text_input_loc = 'Question: ' + question + ' ' + options + ' ' + LOC_propmpt
out = sevila.generate_demo(clip, text_input_qa, text_input_loc, int(keyframe_num))
# print(out)
answer_id = out['output_text'][0]
answer = option_dict[answer_id]
select_index = out['frame_idx'][0]
# images = []
keyframes = []
timestamps =[]
# print('raw_clip', len(raw_clip))
# for j in range(int(video_frame_num)):
# image = raw_clip[:, j, :, :].int()
# image = image.permute(1, 2, 0).numpy()
# images.append(image)
video_len = vlen/fps # seconds
for i in select_index:
image = raw_clip[:, i, :, :].int()
image = image.permute(1, 2, 0).numpy()
keyframes.append(image)
select_i = indice[i]
time = round((select_i / vlen) * video_len, 2)
timestamps.append(str(time)+'s')
gr.components.Gallery(keyframes)
#gr.components.Gallery(images)
timestamps_des = ''
for i in range(len(select_index)):
timestamps_des += 'Keyframe {}: {} \n'.format(str(i+1), timestamps[i])
return keyframes, timestamps_des, answer
with gr.Blocks(title="SeViLA demo") as demo:
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">Self-Chained Image-Language Model for Video Localization and Question Answering</span>
<br>
<span style="font-size: 18px" id="author-info">
<a href="https://yui010206.github.io/" target="_blank">Shoubin Yu</a>,
<a href="https://j-min.io/" target="_blank">Jaemin Cho</a>,
<a href="https://prateek-yadav.github.io/" target="_blank">Prateek Yadav</a>,
<a href="https://www.cs.unc.edu/~mbansal/" target="_blank">Mohit Bansal</a>
</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://github.com/Yui010206/SeViLA" target="_blank">GitHub</a>]
[<a href="https://arxiv.org/abs/2305.06988" target="_blank">Paper</a>]
</span>
</p>
<p>
To locate keyframes in a video and answer question, please:
<br>
(1) upolad your video; (2) write your question/options and set # video frame/# keyframe; (3) click Locate and Answer!
<br>
Just a heads up - loading the SeViLA model can take a few minutes (typically 2-3), and running examples requires about 12GB of memory.
<br>
We've got you covered! We've provided some example videos and questions below to help you get started. Feel free to try out SeViLA with these!
</p>
"""
gr.HTML(description)
with gr.Row():
with gr.Column(scale=1, min_width=600):
video = gr.Video(label='Video')
question = gr.Textbox(placeholder="Why did the two ladies put their hands above their eyes while staring out?", label='Question')
with gr.Row():
option1 = gr.Textbox(placeholder="practicing cheer", label='Option 1')
option2 = gr.Textbox(placeholder="posing for photo", label='Option 2')
option3 = gr.Textbox(placeholder="to see better", label='Option 3')
with gr.Row():
video_frame_num = gr.Textbox(placeholder=32, label='# Video Frame')
keyframe_num = gr.Textbox(placeholder=4, label='# Keyframe')
# device = gr.Textbox(placeholder=0, label='Device')
gen_btn = gr.Button(value='Locate and Answer!')
with gr.Column(scale=1, min_width=600):
keyframes = gr.Gallery(
label="Keyframes", show_label=False, elem_id="gallery",
).style(columns=[4], rows=[1], object_fit="contain", max_width=100, max_height=100)
#keyframes = gr.Gallery(label='Keyframes')
timestamps = gr.outputs.Textbox(label="Keyframe Timestamps")
answer = gr.outputs.Textbox(label="Output Answer")
gen_btn.click(
sevila_demo,
inputs=[video, question, option1, option2, option3, video_frame_num, keyframe_num],
outputs=[keyframes, timestamps, answer],
queue=True
)
#demo = gr.Interface(sevila_demo,
# inputs=[gr.Video(), question, option1, option2, option3, video_frame_num, keyframe_num, device],
# outputs=['gallery', timestamps, answer],
# examples=[['videos/demo1.mp4', 'Why did the two ladies put their hands above their eyes while staring out?', 'practicing cheer.', 'play ball.', 'to see better.', 32, 4, 0],
# ['videos/demo2.mp4', 'What did both of them do after completing skiing?', 'jump and pose.' , 'bend down.','raised their hands.', 32, 4, 0],
# ['videos/demo3.mp4', 'What room was Wilson breaking into when House found him?', 'the kitchen.' , 'the dining room.','the bathroom.', 32, 4, 0]]
# )
with gr.Column():
gr.Examples(
inputs=[video, question, option1, option2, option3, video_frame_num, keyframe_num],
outputs=[keyframes, timestamps, answer],
fn=sevila_demo,
examples=[['videos/demo1.mp4', 'Why did the two ladies put their hands above their eyes while staring out?', 'practicing cheer', 'to place wreaths', 'to see better', 32, 4],
['videos/demo2.mp4', 'What did both of them do after completing skiing?', 'jump and pose' , 'bend down','raised their hands', 32, 4],
['videos/demo3.mp4', 'What room was Wilson breaking into when House found him?', 'the bedroom' , 'the bathroom','the kitchen', 32, 4]],
cache_examples=False,
)
demo.queue(concurrency_count=1, api_open=False)
demo.launch(share=False)