-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoptim.py
46 lines (36 loc) · 1.58 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn
import utils.sam
import torch.optim
import torch.optim.lr_scheduler
import torch.optim.swa_utils
def get_optimizer_scheduler(model_name,
optim_name,
net,
lr,
momentum,
weight_decay,
max_epoch_cos = 200,
swa_lr = 0.05) :
## sgd + sam
sgd_optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
sam_sgd = utils.sam.SAM(net.parameters(), torch.optim.SGD, lr=lr, momentum=momentum, weight_decay=weight_decay)
## adamw + sam
adamw_optimizer = torch.optim.AdamW(net.parameters(), lr=lr, weight_decay=weight_decay)
sam_adamw = utils.sam.SAM(net.parameters(), torch.optim.AdamW, lr=lr, weight_decay=weight_decay)
## convmixer uses adamw optimzer while cnn backbones uses sgd
if model_name in ["convmixer", "vit_cifar"] :
if optim_name in ['sam', 'fmfp'] :
optimizer = sam_adamw
else :
optimizer = adamw_optimizer
else:
if optim_name in ['sam', 'fmfp'] :
optimizer = sam_sgd
else :
optimizer = sgd_optimizer
cos_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_epoch_cos)
## swa model
swa_model = torch.optim.swa_utils.AveragedModel(net)
swa_scheduler = torch.optim.swa_utils.SWALR(optimizer, swa_lr=swa_lr)
return optimizer, cos_scheduler, swa_model, swa_scheduler