forked from deeptextlab/BioPREP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn.py
341 lines (268 loc) · 13.6 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from tensorflow.keras.models import Model, model_from_json, Sequential
from tensorflow.keras.layers import Input, SpatialDropout1D, GlobalMaxPool1D
from tensorflow.keras.layers import Dense, Flatten, Dropout, Embedding, concatenate
from tensorflow.keras.layers import Conv1D, MaxPooling1D
from tensorflow.keras.callbacks import ModelCheckpoint
import tensorflow.keras.backend as K
import numpy as np
import os
from tensorflow.keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
from utility.tensorflow_utils import export_keras_to_tensorflow, export_text_model_to_csv
from utility.tokenizer_utils import word_tokenize
class WordVecCnn(object):
model_name = 'wordvec_cnn_predicate'
def __init__(self):
self.model = None
self.word2idx = None
self.idx2word = None
self.max_len = None
self.config = None
self.vocab_size = None
self.labels = None
@staticmethod
def get_weight_file_path(model_dir_path):
return model_dir_path + '/' + WordVecCnn.model_name + '_weights.h5'
@staticmethod
def get_config_file_path(model_dir_path):
return model_dir_path + '/' + WordVecCnn.model_name + '_config.npy'
@staticmethod
def get_architecture_file_path(model_dir_path):
return model_dir_path + '/' + WordVecCnn.model_name + '_architecture.json'
def load_model(self, model_dir_path):
json = open(self.get_architecture_file_path(model_dir_path), 'r').read()
self.model = model_from_json(json)
self.model.load_weights(self.get_weight_file_path(model_dir_path))
self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
config_file_path = self.get_config_file_path(model_dir_path)
self.config = np.load(config_file_path, allow_pickle=True).item()
self.idx2word = self.config['idx2word']
self.word2idx = self.config['word2idx']
self.max_len = self.config['max_len']
self.vocab_size = self.config['vocab_size']
self.labels = self.config['labels']
def create_model(self):
embedding_size = 768
self.model = Sequential()
self.model.add(Embedding(input_dim=self.vocab_size, input_length=self.max_len, output_dim=embedding_size))
self.model.add(SpatialDropout1D(0.2))
self.model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu')) # use 1D-filter for text clf.
self.model.add(GlobalMaxPool1D())
self.model.add(Dense(units=len(self.labels), activation='softmax'))
self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[self.get_f1])
def predict(self, sentence):
xs = []
# tokens = [w.lower() for w in word_tokenize(sentence)]
tokens = [w for w in word_tokenize(sentence)]
wid = [self.word2idx[token] if token in self.word2idx else len(self.word2idx) for token in tokens]
xs.append(wid)
x = pad_sequences(xs, self.max_len)
output = self.model.predict(x)
return output[0]
def predict_class(self, sentence):
predicted = self.predict(sentence)
idx2label = dict([(idx, label) for label, idx in self.labels.items()])
return idx2label[np.argmax(predicted)]
def fit(self, text_data_model, text_label_pairs, model_dir_path, batch_size=64, epochs=20,
test_size=0.2, random_state=42):
self.config = text_data_model
self.idx2word = self.config['idx2word']
self.word2idx = self.config['word2idx']
self.max_len = self.config['max_len']
self.vocab_size = self.config['vocab_size']
self.labels = self.config['labels']
np.save(self.get_config_file_path(model_dir_path), self.config)
self.create_model()
json = self.model.to_json()
open(self.get_architecture_file_path(model_dir_path), 'w').write(json)
xs = []
ys = []
for text, label in text_label_pairs:
tokens = [x for x in word_tokenize(text)]
wid_list = list()
for w in tokens:
wid = 0
if w in self.word2idx:
wid = self.word2idx[w]
wid_list.append(wid)
xs.append(wid_list)
ys.append(self.labels[str(label)])
X = pad_sequences(xs, maxlen=self.max_len)
Y = np_utils.to_categorical(ys, len(self.labels))
x_train, x_test, y_train, y_test = train_test_split(X, Y,
test_size=test_size,
stratify=Y,
random_state=random_state)
print('===========================================')
print('Below is the shape of train/test dataset.')
print('===========================================')
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
print('===========================================')
weight_file_path = self.get_weight_file_path(model_dir_path)
checkpoint = ModelCheckpoint(weight_file_path)
print('===========================================')
print('======== Now we are on training... ========')
print('===========================================')
history = self.model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epochs,
validation_data=(x_test, y_test), callbacks=[checkpoint],
verbose=1)
self.model.save_weights(weight_file_path)
np.save(model_dir_path + '/' + WordVecCnn.model_name + '-history.npy', history.history)
return history
def get_f1(self, y_true, y_pred):
true_pos = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_pos = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_pos = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_pos / (predicted_pos + K.epsilon())
recall = true_pos / (possible_pos + K.epsilon())
f1_val = 2 * (precision * recall) / (precision + recall + K.epsilon())
return f1_val
def test_run(self, sentence):
print(self.predict(sentence))
def export_tensorflow_model(self, output_fld):
export_keras_to_tensorflow(self.model, output_fld, output_model_file=WordVecCnn.model_name + '.pb')
export_text_model_to_csv(self.config, output_fld, output_model_file=WordVecCnn.model_name + '.csv')
class WordVecMultiChannelCnn(object):
model_name = 'wordvec_multi_channel_cnn'
def __init__(self):
self.model = None
self.config = None
self.word2idx = None
self.idx2word = None
self.max_len = None
self.config = None
self.vocab_size = None
self.labels = None
@staticmethod
def get_weight_file_path(model_dir_path):
return model_dir_path + os.path.sep + WordVecMultiChannelCnn.model_name + '_weights.h5'
@staticmethod
def get_config_file_path(model_dir_path):
return model_dir_path + os.path.sep + WordVecMultiChannelCnn.model_name + '_config.npy'
@staticmethod
def get_architecture_file_path(model_dir_path):
return model_dir_path + os.path.sep + WordVecMultiChannelCnn.model_name + '_architecture.npy'
def load_model(self, model_dir_path):
config_file_path = self.get_config_file_path(model_dir_path)
self.config = np.load(config_file_path).item()
self.idx2word = self.config['idx2word']
self.word2idx = self.config['word2idx']
self.max_len = self.config['max_len']
self.vocab_size = self.config['vocab_size']
self.labels = self.config['labels']
max_input_tokens = len(self.word2idx)
self.model = self.define_model(self.max_len, max_input_tokens)
self.model.load_weights(self.get_weight_file_path(model_dir_path))
def define_model(self, length, vocab_size):
embedding_size = 768
cnn_filter_size = 32
inputs1 = Input(shape=(length,))
embedding1 = Embedding(vocab_size, embedding_size)(inputs1)
conv1 = Conv1D(filters=cnn_filter_size, kernel_size=4, activation='relu')(
embedding1)
drop1 = Dropout(0.5)(conv1)
pool1 = MaxPooling1D(pool_size=2)(drop1)
flat1 = Flatten()(pool1)
inputs2 = Input(shape=(length,))
embedding2 = Embedding(vocab_size, embedding_size)(inputs2)
conv2 = Conv1D(filters=cnn_filter_size, kernel_size=6, activation='relu')(
embedding2)
drop2 = Dropout(0.5)(conv2)
pool2 = MaxPooling1D(pool_size=2)(drop2)
flat2 = Flatten()(pool2)
inputs3 = Input(shape=(length,))
embedding3 = Embedding(vocab_size, embedding_size)(inputs3)
conv3 = Conv1D(filters=cnn_filter_size, kernel_size=8, activation='relu')(
embedding3)
drop3 = Dropout(0.5)(conv3)
pool3 = MaxPooling1D(pool_size=2)(drop3)
flat3 = Flatten()(pool3)
merged = concatenate([flat1, flat2, flat3])
# interpretation
dense1 = Dense(10, activation='relu')(merged) # 수정 필요
outputs = Dense(units=len(self.labels), activation='softmax')(dense1)
model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
# compile
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[self.get_f1])
# summarize
print(model.summary())
return model
def fit(self, text_data_model, text_label_pairs, model_dir_path,
test_size=0.2, random_state=42, epochs=20, batch_size=64):
self.config = text_data_model
self.idx2word = self.config['idx2word']
self.word2idx = self.config['word2idx']
self.max_len = self.config['max_len']
self.vocab_size = self.config['vocab_size']
self.labels = self.config['labels']
verbose = 1
config_file_path = WordVecMultiChannelCnn.get_config_file_path(model_dir_path)
np.save(config_file_path, text_data_model)
max_input_tokens = len(self.word2idx)
self.model = self.define_model(self.max_len, max_input_tokens)
open(self.get_architecture_file_path(model_dir_path), 'wt').write(self.model.to_json())
xs = []
ys = []
for text, label in text_label_pairs:
# tokens = [x.lower() for x in word_tokenize(text)]
tokens = [x for x in word_tokenize(text)]
wid_list = list()
for w in tokens:
wid = 0
if w in self.word2idx:
wid = self.word2idx[w]
wid_list.append(wid)
xs.append(wid_list)
ys.append(self.labels[str(label)])
X = pad_sequences(xs, maxlen=self.max_len)
Y = np_utils.to_categorical(ys, len(self.labels))
weight_file_path = WordVecMultiChannelCnn.get_weight_file_path(model_dir_path)
checkpoint = ModelCheckpoint(weight_file_path)
x_train, x_test, y_train, y_test = train_test_split(X, Y,
test_size=test_size,
stratify=Y,
random_state=random_state)
print('===========================================')
print('Below is the shape of train/test dataset.')
print('===========================================')
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
print('===========================================')
print()
print('===========================================')
print('======== Now we are on training... ========')
print('===========================================')
history = self.model.fit([x_train, x_train, x_train], y_train,
epochs=epochs, batch_size=batch_size,
validation_data=([x_test, x_test, x_test], y_test),
verbose=verbose, callbacks=[checkpoint])
# save the model
self.model.save(weight_file_path)
np.save(model_dir_path + '/' + WordVecMultiChannelCnn.model_name + '-history.npy', history.history)
return history
def get_f1(self, y_true, y_pred):
true_pos = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_pos = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_pos = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_pos / (predicted_pos + K.epsilon())
recall = true_pos / (possible_pos + K.epsilon())
f1_val = 2 * (precision * recall) / (precision + recall + K.epsilon())
return f1_val
def predict(self, sentence):
xs = []
# tokens = [w.lower() for w in word_tokenize(sentence)]
tokens = [w for w in word_tokenize(sentence)]
wid = [self.word2idx[token] if token in self.word2idx else len(self.word2idx) for token in tokens]
xs.append(wid)
x = pad_sequences(xs, self.max_len)
output = self.model.predict([x, x, x])
return output[0]
def predict_class(self, sentence):
predicted = self.predict(sentence)
idx2label = dict([(idx, label) for label, idx in self.labels.items()])
return idx2label[np.argmax(predicted)]
def test_run(self, sentence):
print(self.predict(sentence))
def export_tensorflow_model(self, output_fld):
export_keras_to_tensorflow(self.model, output_fld, output_model_file=WordVecMultiChannelCnn.model_name + '.pb')
export_text_model_to_csv(self.config, output_fld, output_model_file=WordVecMultiChannelCnn.model_name + '.csv')