-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_network.py
118 lines (97 loc) · 3.79 KB
/
build_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import tensorflow as tf
# Input
def get_inputs():
"""
Create TF Placeholders for input, targets, and learning rate.
:return: Tuple (input, targets, learning rate)
"""
Input = tf.placeholder(tf.int32, [None, None], name = 'input')
Targets = tf.placeholder(tf.int32, [None, None], name = 'targets')
LearningRate = tf.placeholder(tf.float32, name = 'learning_rate')
return Input, Targets, LearningRate
# Build RNN Cell and Initialize
def get_init_cell(batch_size, rnn_size, keep_prob):
"""
Create an RNN Cell and initialize it.
:param batch_size: Size of batches
:param rnn_size: Size of RNNs
:param keep_prob: keep probability
:return: Tuple (cell, initialize state)
"""
lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
lstm = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
cell = tf.contrib.rnn.MultiRNNCell([lstm])
initial_state = tf.identity(cell.zero_state(batch_size = batch_size, dtype = tf.float32),
name = 'initial_state')
return cell, initial_state
# Word Embedding
# Apply embedding to `input_data` using TensorFlow. Return the embedded sequence.
def get_embed(input_data, vocab_size, embed_dim):
"""
Create embedding for <input_data>.
:param input_data: TF placeholder for text input.
:param vocab_size: Number of words in vocabulary.
:param embed_dim: Number of embedding dimensions
:return: Embedded input.
"""
embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1))
embed_input = tf.nn.embedding_lookup(embedding, input_data)
return embed_input
# Build RNN
def build_rnn(cell, inputs):
"""
Create a RNN using a RNN Cell
:param cell: RNN Cell
:param inputs: Input text data
:return: Tuple (Outputs, Final State)
"""
outputs, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32)
final_state = tf.identity(state, name='final_state')
return outputs, final_state
# Build the Neural Network
def build_nn(cell, input_data, vocab_size, embed_dim):
"""
Build part of the neural network
:param cell: RNN cell
:param input_data: Input data
:param vocab_size: Vocabulary size
:param embed_dim: Number of embedding dimensions
:return: Tuple (Logits, FinalState)
"""
embed_input = get_embed(input_data, vocab_size, embed_dim)
outputs, final_state = build_rnn(cell, embed_input)
logits = tf.contrib.layers.fully_connected(activation_fn=None,
num_outputs=vocab_size,
inputs = outputs)
return logits, final_state
# Batches
def get_batches(int_text, batch_size, seq_length):
"""
Return batches of input and target
:param int_text: Text with the words replaced by their ids
:param batch_size: The size of batch
:param seq_length: The length of sequence
:return: Batches as a Numpy array
"""
characters_per_batch = seq_length * batch_size
n_batches = len(int_text)//characters_per_batch
# Keep only enough characters to make full batches
int_text = int_text[:n_batches * characters_per_batch]
int_text = np.array(int_text)
# Reshape into n_seqs rows
int_text = int_text.reshape((batch_size, -1))
batches = []
for n in range(0, int_text.shape[1], seq_length):
# The features
x = int_text[:, n:n+seq_length]
# The targets, shifted by one
y = np.zeros_like(x)
if (n == int_text.shape[1] - seq_length):
y[:, :-1], y[:, -1] = x[:, 1:], x[:, -1] + 1
y[-1, -1] = 0
else:
y[:, :-1], y[:, -1] = x[:, 1:], x[:, -1] + 1
batch = [x, y]
batches.append(batch)
return np.array(batches)