-
Notifications
You must be signed in to change notification settings - Fork 80
/
inference.py
161 lines (123 loc) · 6.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import librosa
from tqdm.auto import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import torch.nn as nn
# Using the embedded version of Python can also correctly import the utils module.
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix, get_model_from_config, normalize_audio, denormalize_audio
from utils import prefer_target_instrument, apply_tta, load_start_checkpoint, load_lora_weights
import warnings
warnings.filterwarnings("ignore")
def run_folder(model, args, config, device, verbose: bool = False):
"""
Process a folder of audio files for source separation.
Parameters:
----------
model : torch.nn.Module
Pre-trained model for source separation.
args : Namespace
Arguments containing input folder, output folder, and processing options.
config : Dict
Configuration object with audio and inference settings.
device : torch.device
Device for model inference (CPU or CUDA).
verbose : bool, optional
If True, prints detailed information during processing. Default is False.
"""
start_time = time.time()
model.eval()
mixture_paths = sorted(glob.glob(os.path.join(args.input_folder, '*.*')))
sample_rate = getattr(config.audio, 'sample_rate', 44100)
print(f"Total files found: {len(mixture_paths)}. Using sample rate: {sample_rate}")
instruments = prefer_target_instrument(config)[:]
os.makedirs(args.store_dir, exist_ok=True)
if not verbose:
mixture_paths = tqdm(mixture_paths, desc="Total progress")
if args.disable_detailed_pbar:
detailed_pbar = False
else:
detailed_pbar = True
for path in mixture_paths:
print(f"Processing track: {path}")
try:
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
except Exception as e:
print(f'Cannot read track: {format(path)}')
print(f'Error message: {str(e)}')
continue
mix_orig = mix.copy()
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mix, norm_params = normalize_audio(mix)
waveforms_orig = demix(config, model, mix, device, model_type=args.model_type, pbar=detailed_pbar)
if args.use_tta:
waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type)
if args.extract_instrumental:
instr = 'vocals' if 'vocals' in instruments else instruments[0]
waveforms_orig['instrumental'] = mix_orig - waveforms_orig[instr]
if 'instrumental' not in instruments:
instruments.append('instrumental')
file_name = os.path.splitext(os.path.basename(path))[0]
output_dir = os.path.join(args.store_dir, file_name)
os.makedirs(output_dir, exist_ok=True)
for instr in instruments:
estimates = waveforms_orig[instr]
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = denormalize_audio(estimates, norm_params)
codec = 'flac' if getattr(args, 'flac_file', False) else 'wav'
subtype = 'PCM_16' if args.flac_file and args.pcm_type == 'PCM_16' else 'FLOAT'
output_path = os.path.join(output_dir, f"{instr}.{codec}")
sf.write(output_path, estimates.T, sr, subtype=subtype)
print(f"Elapsed time: {time.time() - start_time:.2f} seconds.")
def proc_folder(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of bandit, bandit_v2, bs_roformer, htdemucs, mdx23c, mel_band_roformer, scnet, scnet_unofficial, segm_models, swin_upernet, torchseg")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights")
parser.add_argument("--input_folder", type=str, help="folder with mixtures to process")
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file")
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids')
parser.add_argument("--extract_instrumental", action='store_true', help="invert vocals to get instrumental if provided")
parser.add_argument("--disable_detailed_pbar", action='store_true', help="disable detailed progress bar")
parser.add_argument("--force_cpu", action='store_true', help="Force the use of CPU even if CUDA is available")
parser.add_argument("--flac_file", action='store_true', help="Output flac file instead of wav")
parser.add_argument("--pcm_type", type=str, choices=['PCM_16', 'PCM_24'], default='PCM_24', help="PCM type for FLAC files (PCM_16 or PCM_24)")
parser.add_argument("--use_tta", action='store_true', help="Flag adds test time augmentation during inference (polarity and channel inverse). While this triples the runtime, it reduces noise and slightly improves prediction quality.")
parser.add_argument("--lora_checkpoint", type=str, default='', help="Initial checkpoint to LoRA weights")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
device = "cpu"
if args.force_cpu:
device = "cpu"
elif torch.cuda.is_available():
print('CUDA is available, use --force_cpu to disable it.')
device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}'
elif torch.backends.mps.is_available():
device = "mps"
print("Using device: ", device)
model_load_start_time = time.time()
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
load_start_checkpoint(args, model, type_='inference')
print("Instruments: {}".format(config.training.instruments))
# in case multiple CUDA GPUs are used and --device_ids arg is passed
if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu:
model = nn.DataParallel(model, device_ids = args.device_ids)
model = model.to(device)
print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))
run_folder(model, args, config, device, verbose=True)
if __name__ == "__main__":
proc_folder(None)