forked from kpatel427/YouTubeTutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TI_monocle3.R
180 lines (116 loc) · 4.76 KB
/
TI_monocle3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# script to perform trajectory analysis
# https://www.nature.com/articles/s41467-019-10291-0
# setwd("~/Desktop/demo/monocle3")
set.seed(1234)
library(monocle3)
library(SeuratWrappers)
library(Seurat)
library(ggplot2)
library(tidyverse)
# read in data
markers <- read.delim('ABC_Marker.txt', header = T) # gene metadata
metadata <- read.delim('ABC_Meta.txt', header = T) # cell metadata
expr <- read.delim('ABC_umi_matrix_7551_cells.csv', header = T, sep = ',') # expression matrix
# create seurat object ---------------
expr.t <- t(expr)
seu.obj <- CreateSeuratObject(counts = expr.t)
View(seu.obj@meta.data)
seu.obj@meta.data <- merge(seu.obj@meta.data, metadata, by.x = 'row.names', by.y = 'cell_id')
View(seu.obj@meta.data)
seu.obj@meta.data <- seu.obj@meta.data %>%
column_to_rownames(var = 'Row.names')
seu.obj$mitopercent <- PercentageFeatureSet(seu.obj, pattern = '^MT-')
seu.obj.filtered <- subset(seu.obj, subset = nCount_RNA > 800 &
nFeature_RNA > 500 &
mitopercent < 10)
# subset my seurat object - B cells
unique(seu.obj.filtered@meta.data$population)
Idents(seu.obj.filtered) <- seu.obj.filtered$population
b.seu <- subset(seu.obj.filtered, idents = "b")
b.seu
unique(b.seu@meta.data$redefined_cluster)
# pre-processing using seurat
b.seu <- NormalizeData(b.seu)
b.seu <- FindVariableFeatures(b.seu)
b.seu <- ScaleData(b.seu)
b.seu <- RunPCA(b.seu)
b.seu <- FindNeighbors(b.seu, dims = 1:30)
b.seu <- FindClusters(b.seu, resolution = 0.9)
b.seu <- RunUMAP(b.seu, dims = 1:30, n.neighbors = 50)
a1 <- DimPlot(b.seu, reduction = 'umap', group.by = 'redefined_cluster', label = T)
a2 <- DimPlot(b.seu, reduction = 'umap', group.by = 'seurat_clusters', label = T)
a1|a2
# MONOCLE3 WORKFLOW ---------------------
# monocle3 requires cell_data_set object
# convert seurat object to cell_data_set object for monocle3
# ...1 Convert to cell_data_set object ------------------------
cds <- as.cell_data_set(b.seu)
cds
# to get cell metadata
colData(cds)
# to gene metdata
fData(cds)
rownames(fData(cds))[1:10]
# since it misses the gene_short_name column, let's add it
fData(cds)$gene_short_name <- rownames(fData(cds))
# to get counts
counts(cds)
# ...2. Cluster cells (using clustering info from seurat's UMAP)---------------------------
# let's use the clustering information have
# assign paritions
reacreate.partition <- c(rep(1,length(cds@colData@rownames)))
names(reacreate.partition) <- cds@colData@rownames
reacreate.partition <- as.factor(reacreate.partition)
cds@clusters$UMAP$partitions <- reacreate.partition
# Assign the cluster info
list_cluster <- b.seu@active.ident
cds@clusters$UMAP$clusters <- list_cluster
# Assign UMAP coordinate - cell embeddings
cds@int_colData@listData$reducedDims$UMAP <- b.seu@reductions$umap@cell.embeddings
# plot
cluster.before.trajectory <- plot_cells(cds,
color_cells_by = 'cluster',
label_groups_by_cluster = FALSE,
group_label_size = 5) +
theme(legend.position = "right")
cluster.names <- plot_cells(cds,
color_cells_by = "redefined_cluster",
label_groups_by_cluster = FALSE,
group_label_size = 5) +
scale_color_manual(values = c('red', 'blue', 'green', 'maroon', 'yellow', 'grey', 'cyan')) +
theme(legend.position = "right")
cluster.before.trajectory | cluster.names
# ...3. Learn trajectory graph ------------------------
cds <- learn_graph(cds, use_partition = FALSE)
plot_cells(cds,
color_cells_by = 'redefined_cluster',
label_groups_by_cluster = FALSE,
label_branch_points = FALSE,
label_roots = FALSE,
label_leaves = FALSE,
group_label_size = 5)
# ...4. Order the cells in pseudotime -------------------
cds <- order_cells(cds, reduction_method = 'UMAP', root_cells = colnames(cds[,clusters(cds) == 5]))
plot_cells(cds,
color_cells_by = 'pseudotime',
label_groups_by_cluster = FALSE,
label_branch_points = FALSE,
label_roots = FALSE,
label_leaves = FALSE)
# cells ordered by monocle3 pseudotime
pseudotime(cds)
cds$monocle3_pseudotime <- pseudotime(cds)
data.pseudo <- as.data.frame(colData(cds))
ggplot(data.pseudo, aes(monocle3_pseudotime, reorder(redefined_cluster, monocle3_pseudotime, median), fill = redefined_cluster)) +
geom_boxplot()
# ...5. Finding genes that change as a function of pseudotime --------------------
deg_bcells <- graph_test(cds, neighbor_graph = 'principal_graph', cores = 4)
deg_bcells %>%
arrange(q_value) %>%
filter(status == 'OK') %>%
head()
FeaturePlot(b.seu, features = c('E2F2', 'STMN1', 'CD52'))
# visualizing pseudotime in seurat
b.seu$pseudotime <- pseudotime(cds)
Idents(b.seu) <- b.seu$redefined_cluster
FeaturePlot(b.seu, features = "pseudotime", label = T)