-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnest.py
86 lines (74 loc) · 3.29 KB
/
resnest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
"""ResNeSt models"""
import torch
from resnet import ResNet, Bottleneck
import time
__all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269']
_url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth'
_model_sha256 = {name: checksum for checksum, name in [
('528c19ca', 'resnest50'),
('22405ba7', 'resnest101'),
('75117900', 'resnest200'),
('0cc87c48', 'resnest269'),
]}
def short_hash(name):
if name not in _model_sha256:
raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
return _model_sha256[name][:8]
resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for
name in _model_sha256.keys()
}
def resnest50(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3],
radix=2, groups=1, bottleneck_width=64,
deep_stem=True, stem_width=32, avg_down=True,
avd=True, avd_first=False, **kwargs)
if pretrained:
model.load_state_dict(torch.hub.load_state_dict_from_url(
resnest_model_urls['resnest50'], progress=True, check_hash=True))
return model
def resnest101(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3],
radix=2, groups=1, bottleneck_width=64,
deep_stem=True, stem_width=64, avg_down=True,
avd=True, avd_first=False, **kwargs)
if pretrained:
model.load_state_dict(torch.hub.load_state_dict_from_url(
resnest_model_urls['resnest101'], progress=True, check_hash=True))
return model
def resnest200(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 24, 36, 3],
radix=2, groups=1, bottleneck_width=64,
deep_stem=True, stem_width=64, avg_down=True,
avd=True, avd_first=False, **kwargs)
if pretrained:
model.load_state_dict(torch.hub.load_state_dict_from_url(
resnest_model_urls['resnest200'], progress=True, check_hash=True))
return model
def resnest269(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 30, 48, 8],
radix=2, groups=1, bottleneck_width=64,
deep_stem=True, stem_width=64, avg_down=True,
avd=True, avd_first=False, **kwargs)
if pretrained:
model.load_state_dict(torch.hub.load_state_dict_from_url(
resnest_model_urls['resnest269'], progress=True, check_hash=True))
return model
def demo():
st = time.perf_counter()
st = time.perf_counter()
for i in range(1):
net = resnest50(num_classes=365)
y = net(torch.ones(2, 3, 224, 224))
print(y.size())
print("CPU time: {}".format(time.perf_counter() - st))
from torchstat import stat
stat(net, (3, 224, 224))
stat(net, (3, 224, 224))
# demo()