-
Notifications
You must be signed in to change notification settings - Fork 39
/
inference.py
226 lines (199 loc) · 10.1 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Title: RADDet
# Authors: Ao Zhang, Erlik Nowruzi, Robert Laganiere
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import cv2
import numpy as np
import tensorflow as tf
import tensorflow.keras as K
import matplotlib.pyplot as plt
import shutil
from glob import glob
from tqdm import tqdm
import time
import model.model as M
import model.model_cart as MCart
from dataset.batch_data_generator import DataGenerator
import metrics.mAP as mAP
import util.loader as loader
import util.helper as helper
import util.drawer as drawer
def cutImage(image_dir, image_filename):
image_name = os.path.join(image_dir, image_filename)
image = cv2.imread(image_name)
part_1 = image[:, 1540:1750, :]
part_2 = image[:, 2970:3550, :]
part_3 = image[:, 4370:5400, :]
part_4 = image[:, 6200:6850, :]
new_img = np.concatenate([part_1, part_2, part_3, part_4], axis=1)
cv2.imwrite(image_name, new_img)
def cutImage3Axes(image_dir, image_filename):
image_name = os.path.join(image_dir, image_filename)
image = cv2.imread(image_name)
part_1 = image[:, 1780:2000, :]
part_2 = image[:, 3800:4350, :]
part_3 = image[:, 5950:6620, :]
new_img = np.concatenate([part_1, part_2, part_3], axis=1)
cv2.imwrite(image_name, new_img)
def loadDataForPlot(all_RAD_files, config_data, config_inference, \
config_radar, interpolation=15.):
""" Load data one by one for generating evaluation images """
sequence_num = -1
for RAD_file in all_RAD_files:
sequence_num += 1
### load RAD input ###
RAD_complex = loader.readRAD(RAD_file)
### NOTE: real time visualization ###
RA = helper.getLog(helper.getSumDim(helper.getMagnitude(RAD_complex, \
power_order=2), target_axis=-1), scalar=10, log_10=True)
RD = helper.getLog(helper.getSumDim(helper.getMagnitude(RAD_complex, \
power_order=2), target_axis=1), scalar=10, log_10=True)
RA_cart = helper.toCartesianMask(RA, config_radar, \
gapfill_interval_num=int(interpolation))
RA_img = helper.norm2Image(RA)[..., :3]
RD_img = helper.norm2Image(RD)[..., :3]
RA_cart_img = helper.norm2Image(RA_cart)[..., :3]
img_file = loader.imgfileFromRADfile(RAD_file, config_data["test_set_dir"])
stereo_left_image = loader.readStereoLeft(img_file)
RAD_data = helper.complexTo2Channels(RAD_complex)
RAD_data = (RAD_data - config_data["global_mean_log"]) / \
config_data["global_variance_log"]
data = tf.expand_dims(tf.constant(RAD_data, dtype=tf.float32), axis=0)
yield sequence_num, data, stereo_left_image, RD_img, RA_img, RA_cart_img
def main():
### NOTE: GPU manipulation, you may can print this out if necessary ###
gpus = tf.config.experimental.list_physical_devices('GPU')
if len(gpus) > 0:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
config = loader.readConfig()
config_data = config["DATA"]
config_radar = config["RADAR_CONFIGURATION"]
config_model = config["MODEL"]
config_train = config["TRAIN"]
config_evaluate = config["EVALUATE"]
config_inference = config["INFERENCE"]
anchor_boxes = loader.readAnchorBoxes() # load anchor boxes with order
anchor_cart = loader.readAnchorBoxes(anchor_boxes_file="./anchors_cartboxes.txt")
num_classes = len(config_data["all_classes"])
### NOTE: using the yolo head shape out from model for data generator ###
model = M.RADDet(config_model, config_data, config_train, anchor_boxes)
model.build([None] + config_model["input_shape"])
model.backbone_stage.summary()
model.summary()
### NOTE: building another model for Cartesian Boxes ###
model_cart = MCart.RADDetCart(config_model, config_data, config_train, \
anchor_cart, list(model.backbone_fmp_shape))
model_cart.build([None] + model.backbone_fmp_shape)
model_cart.summary()
### NOTE: RAD Boxes ckpt ###
logdir = os.path.join(config_inference["log_dir"], \
"b_" + str(config_train["batch_size"]) + \
"lr_" + str(config_train["learningrate_init"]))
if not os.path.exists(logdir):
raise ValueError("RAD Boxes model not loaded, please check the ckpt path.")
global_steps = tf.Variable(1, trainable=False, dtype=tf.int64)
optimizer = K.optimizers.Adam(learning_rate=config_train["learningrate_init"])
ckpt = tf.train.Checkpoint(optimizer=optimizer, model=model, step=global_steps)
manager = tf.train.CheckpointManager(ckpt, \
os.path.join(logdir, "ckpt"), max_to_keep=3)
ckpt.restore(manager.latest_checkpoint)
if manager.latest_checkpoint:
print("Restored RAD Boxes Model from {}".format(manager.latest_checkpoint))
else:
raise ValueError("RAD Boxes model not loaded, please check the ckpt path.")
### NOTE: Cartesian Boxes ckpt ###
if_evaluate_cart = True
logdir_cart = os.path.join(config_inference["log_dir"], "cartesian_" + \
"b_" + str(config_train["batch_size"]) + \
"lr_" + str(config_train["learningrate_init"]))
# "lr_" + str(config_train["learningrate_init"]) + \
# "_" + str(config_train["log_cart_add"]))
if not os.path.exists(logdir_cart):
if_evaluate_cart = False
print("*************************************************************")
print("Cartesian ckpt not found, skipping evaluating Cartesian Boxes")
print("*************************************************************")
if if_evaluate_cart:
global_steps_cart = tf.Variable(1, trainable=False, dtype=tf.int64)
optimizer_cart = K.optimizers.Adam(learning_rate=config_train["learningrate_init"])
ckpt_cart = tf.train.Checkpoint(optimizer=optimizer_cart, model=model_cart, \
step=global_steps_cart)
manager_cart = tf.train.CheckpointManager(ckpt_cart, \
os.path.join(logdir_cart, "ckpt"), max_to_keep=3)
ckpt_cart.restore(manager_cart.latest_checkpoint)
if manager.latest_checkpoint:
print("Restored Cartesian Boxes Model from {}".format\
(manager_cart.latest_checkpoint))
def inferencePlotting(all_RAD_files):
""" Plot the predictions of all data in dataset """
if if_evaluate_cart:
fig, axes = drawer.prepareFigure(4, figsize=(80, 6))
else:
fig, axes = drawer.prepareFigure(3, figsize=(80, 6))
colors = loader.randomColors(config_data["all_classes"])
image_save_dir = "./images/inference_plots/"
if not os.path.exists(image_save_dir):
os.makedirs(image_save_dir)
else:
shutil.rmtree(image_save_dir)
os.makedirs(image_save_dir)
print("Start plotting, it might take a while...")
pbar = tqdm(total=len(all_RAD_files))
model_RAD_st = []
model_cart_st = []
for sequence_num, data, stereo_left_image, RD_img, RA_img, RA_cart_img in \
loadDataForPlot(all_RAD_files, config_data, config_inference, \
config_radar):
if data is None or stereo_left_image is None:
pbar.update(1)
continue
model_RAD_time_start = time.time()
feature = model(data)
pred_raw, pred = model.decodeYolo(feature)
pred_frame = pred[0]
predicitons = helper.yoloheadToPredictions(pred_frame, \
conf_threshold=config_evaluate["confidence_threshold"])
nms_pred = helper.nms(predicitons, \
config_inference["nms_iou3d_threshold"], \
config_model["input_shape"], \
sigma=0.3, method="nms")
model_RAD_st.append(time.time() - model_RAD_time_start)
if if_evaluate_cart:
model_cart_time_start = time.time()
backbone_fmp = model.backbone_stage(data)
pred_raw_cart = model_cart(backbone_fmp)
pred_cart = model_cart.decodeYolo(pred_raw_cart)
pred_frame_cart = pred_cart[0]
predicitons_cart = helper.yoloheadToPredictions2D(pred_frame_cart, \
conf_threshold=0.5)
nms_pred_cart = helper.nms2D(predicitons_cart, \
config_inference["nms_iou3d_threshold"], \
config_model["input_shape"], \
sigma=0.3, method="nms")
model_cart_st.append(time.time() - model_cart_time_start)
else:
nms_pred_cart = None
drawer.clearAxes(axes)
drawer.drawInference(stereo_left_image, RD_img, \
RA_img, RA_cart_img, nms_pred, \
config_data["all_classes"], colors, axes, \
radar_cart_nms=nms_pred_cart)
drawer.saveFigure(image_save_dir, "%.6d.png"%(sequence_num))
if if_evaluate_cart:
cutImage(image_save_dir, "%.6d.png"%(sequence_num))
else:
cutImage3Axes(image_save_dir, "%.6d.png"%(sequence_num))
pbar.update(1)
print("------", " The average inference time for RAD Boxes: ", \
np.mean(model_RAD_st))
print("======", " The average inference time for Cartesian Boxes: ", \
np.mean(model_cart_st))
### NOTE: inference starting from here ###
all_RAD_files = glob(os.path.join(config_data["test_set_dir"], "RAD/*/*.npy"))
inferencePlotting(all_RAD_files)
if __name__ == "__main__":
main()