-
Notifications
You must be signed in to change notification settings - Fork 17
/
run_prompt_ft.py
468 lines (429 loc) · 22 KB
/
run_prompt_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
""" Finetuning the models for sequence classification on downstream tasks."""
import os
import json
import sys
import copy
import tqdm
import random
import logging
import numpy as np
from dataclasses import dataclass, field
from typing import Optional, Callable, Dict
import torch
from src.processors import num_labels_mapping, output_modes_mapping, compute_metrics_mapping, evaluate_metrics_mapping
from src.model import RobertaForPromptingClassification
from src.dataset import SemiLMDatasetSequenceClassification, DartDatasetSequenceClassification
from transformers import InputExample
import evaluate
import transformers
from transformers import (
RobertaTokenizer,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
train_embedding_first: bool = field(default=False, metadata={"help": "Whether train the embeddings of the model first."})
downstream_task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on"},
)
task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on."},
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
truncate_head: bool = field(
default=False, metadata={"help": "Truncate the head or tail of the sequence."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_labelled_data: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the test data."}
)
task_type: str = field(default="glue", metadata={"help": "The type of the task."})
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_type: str = field(
default="prompting",
metadata={"help": "Select prompting, dart, or mask for the model type"},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
eb_learning_rate: float = field(default=1e-5, metadata={"help": "The initial learning rate for AdamW for embedding training."})
eb_num_train_epochs: float = field(default=5.0, metadata={"help": "Total number of training epochs to perform for embedding training."})
run_pseduo_label: bool = field(default=False, metadata={"help": "Whether to run pseudo label."})
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
logger.info(f"Runing task_type: {data_args.task_type}")
if data_args.task_type == "glue":
training_args.metric_for_best_model = evaluate_metrics_mapping[data_args.downstream_task_name]
training_args.greater_is_better = True
logger.info("metric_for_best_model is set to {}".format(training_args.metric_for_best_model))
else:
training_args.metric_for_best_model = "eval_f1"
training_args.greater_is_better = True
logger.info("metric_for_best_model is set to {}".format(training_args.metric_for_best_model))
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
if not os.path.exists(training_args.output_dir):
os.makedirs(training_args.output_dir)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.FileHandler(os.path.join(training_args.output_dir, 'output.log'), mode='w'),
logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
data_args.seed = training_args.seed
try:
num_labels = num_labels_mapping[data_args.downstream_task_name.lower()]
output_mode = output_modes_mapping[data_args.downstream_task_name.lower()]
logger.info("Task name: {}, number of labels: {}, output mode: {}".format(data_args.downstream_task_name, num_labels, output_mode))
except KeyError:
raise ValueError("Task not found: %s" % (data_args.downstream_task_name))
# Loading a dataset from your local files.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file}
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
# Load tokenizer
tokenizer = RobertaTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
logger.info(f'before {len(tokenizer)}')
# Preprocessing the raw_datasets
if model_args.model_type == "prompting":
ModelSpecificDataset = SemiLMDatasetSequenceClassification
elif model_args.model_type == "dart":
ModelSpecificDataset = DartDatasetSequenceClassification
else:
raise NotImplementedError(f"model type {model_args.model_type} is not implemented")
train_dataset, eval_dataset, predict_dataset = None, None, None
if training_args.do_train:
train_dataset = ModelSpecificDataset(data_args, tokenizer=tokenizer, file_path=data_files["train"], mode="train")
if training_args.do_eval:
eval_dataset = ModelSpecificDataset(data_args, tokenizer=tokenizer, file_path=data_files["validation"], mode="dev")
if training_args.do_predict:
if model_args.run_pseduo_label:
# We use train and dev set with pseduo label for mlm training
predict_dataset_train = ModelSpecificDataset(data_args, tokenizer=tokenizer, file_path=data_files["test"], mode="pseudo_train")
predict_dataset_dev = ModelSpecificDataset(data_args, tokenizer=tokenizer, file_path=data_files["test"], mode="pseudo_dev")
else:
# Otherwise, we use test set for reuglar evaluation
predict_dataset = ModelSpecificDataset(data_args, tokenizer=tokenizer, file_path=data_files["test"], mode="test")
processed_dataset = train_dataset if train_dataset is not None else eval_dataset if eval_dataset is not None else predict_dataset
logger.info(f'after {len(tokenizer)}')
if model_args.model_type == "dart":
logger.info(f'pattern: {processed_dataset.pattern}')
# Load pretrained model
if model_args.model_type == "prompting" or model_args.model_type == "dart":
model = RobertaForPromptingClassification.from_pretrained(model_args.model_name_or_path)
else:
raise NotImplementedError(f"model type {model_args.model_type} is not implemented")
model.mlm_logits_to_cls_logits_tensor = processed_dataset.mlm_logits_to_cls_logits_tensor
model.num_labels = 1 if data_args.downstream_task_name == "STS-B" else len(processed_dataset.word_to_label)
if data_args.downstream_task_name == "STS-B":
model.lb = 0
model.ub = 5
logger.info("word_to_label: {}".format(processed_dataset.word_to_label))
if (model_args.model_type == "dart" or model_args.model_type == "mask") and training_args.do_train:
"""
Only for DART model, we need to resize the token embeddings and initialize the new embeddings from the token embeddings.
Because Dart model uses the additional token embeddings for the pattern and the label.
We will not update embeddings when the model is evaluated or predicted, with the assumption that the model is already trained.
"""
model.resize_token_embeddings(len(tokenizer))
model._init_embedding(processed_dataset.pattern_index, processed_dataset.mlm_label_index, initialize_from_token_embeddings=True)
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set guid: {train_dataset.examples[index].guid}.")
logger.info(f"Sample {index} of the training set text_a: {train_dataset.examples[index].text_a}.")
logger.info(f"Sample {index} of the training set text_b: {train_dataset.examples[index].text_b}.")
logger.info(f"Sample {index} of the training set label: {train_dataset.examples[index].label}.")
logger.info(f"Sample {index} of the training set ids: {train_dataset[index]}.")
# Get the metric function
if data_args.task_type == "ssl" :
f1_metric = evaluate.load("f1")
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.argmax(preds, axis=1)
result = f1_metric.compute(predictions=preds, references=p.label_ids, average='macro')
return result
elif data_args.task_type == "glue":
def build_compute_metrics_fn(task_name: str) -> Callable[[EvalPrediction], Dict]:
def compute_metrics_fn(p: EvalPrediction):
# Note: the eval dataloader is sequential, so the examples are in order.
# We average the logits over each sample for using demonstrations.
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
num_logits = preds.shape[-1]
if num_logits == 1:
preds = np.squeeze(preds)
else:
preds = np.argmax(preds, axis=1)
return compute_metrics_mapping[task_name](task_name, preds, p.label_ids)
return compute_metrics_fn
else:
raise NotImplementedError(f"task type {model_args.task_type} is not implemented")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics if data_args.task_type == "ssl" else build_compute_metrics_fn(data_args.downstream_task_name.lower()),
tokenizer=tokenizer,
data_collator=default_data_collator,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if model_args.model_type == "mask":
logger.info("mask_map: {}".format(model.mask_map))
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset=eval_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
if not model_args.run_pseduo_label:
test_output = trainer.predict(predict_dataset)
test_metrics = test_output.metrics
trainer.log_metrics("test", test_metrics)
trainer.save_metrics("test", test_metrics)
if data_args.downstream_task_name == "MNLI":
data_args.downstream_task_name = "MNLI-mm"
predict_dataset_2 = ModelSpecificDataset(data_args, tokenizer=tokenizer, file_path=data_files["test"], mode="test")
test_output = trainer.predict(predict_dataset_2)
test_metrics = test_output.metrics
trainer.log_metrics("test_mm", test_metrics)
trainer.save_metrics("test_mm", test_metrics)
else:
for predict_dataset, split in zip([predict_dataset_train, predict_dataset_dev], ["train", "dev"]):
test_output = trainer.predict(predict_dataset)
test_metrics = test_output.metrics
trainer.log_metrics("test", test_metrics)
trainer.save_metrics("test", test_metrics)
num_logits = test_output.predictions.shape[-1]
if num_logits == 1:
label_ids = test_output.label_ids.tolist()
test_probs = np.squeeze(test_output.predictions).tolist()
test_predictions = ['0' if float(label) <= 2.5 else '1' for label in test_probs]
else:
test_logits = torch.tensor(test_output.predictions)
test_logits = torch.nn.functional.softmax(test_logits.float(), dim=1)
test_probs, test_predictions = torch.topk(test_logits, 1)
test_probs, test_predictions = test_probs.squeeze(1).tolist(), test_predictions.squeeze(1).tolist()
label_ids = test_output.label_ids.tolist() if test_output.label_ids is not None else [None] * len(test_predictions)
output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{split}.json")
output_dct = {}
test_pred_list = []
test_gold_list = []
with open(output_predict_file, "w") as f_writer:
logger.info(f"***** Predict results {data_args.downstream_task_name} *****")
for index, (_label, _pred, _confidence) in enumerate(tqdm.tqdm(zip(label_ids, test_predictions, test_probs))):
test_sample = predict_dataset.__getitem__(index) # Dict
test_InputExample = predict_dataset.examples[index] # InputExample
assert isinstance(test_InputExample, InputExample)
assert predict_dataset.convert_fn(test_InputExample).input_ids == test_sample["input_ids"]
# assert _label == test_sample["labels"]
if data_args.downstream_task_name == "STS-B":
text_label = "0" if float(test_InputExample.label) <= 2.5 else "1"
text_label = processed_dataset.label_to_word[text_label]
else:
text_label = processed_dataset.label_to_word[test_InputExample.label] if test_InputExample.label else None
output_dct[str(index)] = {
"text_a": test_InputExample.text_a,
"text_b": test_InputExample.text_b,
"text_label": text_label,
"label": str(_label),
"pred": str(_pred),
"confidence": _confidence,
}
if data_args.downstream_task_name == "STS-B":
test_pred_list.append(_confidence)
else:
test_pred_list.append(_pred)
test_gold_list.append(_label)
if data_args.task_type == "ssl":
test_result = f1_metric.compute(predictions=test_pred_list, references=test_gold_list, average='macro')
else:
if test_InputExample.label is not None:
test_result = compute_metrics_mapping[data_args.downstream_task_name.lower()](data_args.downstream_task_name.lower(), np.array(test_pred_list), np.array(test_gold_list))
else:
test_result = {}
logger.info(f"***** {data_args.downstream_task_name} test results: {test_result} *****")
f_writer.write(json.dumps(output_dct, indent=4))
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if data_args.downstream_task_name is not None:
kwargs["language"] = "en"
kwargs["dataset_tags"] = data_args.task_type
kwargs["dataset_args"] = data_args.downstream_task_name
kwargs["dataset"] = data_args.downstream_task_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()