Skip to content

A efficient GAN framework for generating acne skin patches with limited data.

License

Notifications You must be signed in to change notification settings

ZijiaLewisLu/SkinGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SkinGAN Project

src folder includes all the project codes.

All the needed packages are listed in requirements.txt.

train.py is used for training the GAN. inference.py is used for modify a non-acne image with a pretrained GAN model.

data folder is the location for training data.

The ACNE04 images can be downloaded from here. Please download the Classification.tar and unzip it in the data folder.

The extracted facial landmarks are stored in data/Results.

ckpt folder contains a checkpoint of a pretrained Generator.


To train the model, you can use command:

 python -m src.train --gpu 0 --exp train \
            --modify_loss_weight 1.0 --log_every 20 --epoch 1000 --batch_size 128  \
            --Dprestep 20 --Gprestep 0 --Gstep 2

To modify a no-acne image, you can use command:

python -m src.inference \
        --image_path 'data/example/levle0_2.jpg' \
        --landmark_path 'data/example/levle0_2.pkl' \
        --save_dir 'generate' \
        --Gckpt 'ckpt/Gen_5600.pth' \
        --num_patch 5

It will randomly choose a patch, add acnes to the patch and save the modified full face image and a patch comparison figure to save_dir. With --num_patch X, it will randomly sample X patches and generate X modifications.

Cite as:

Lu, Z & Krishnamurthy, S (2021). SkinGAN: Medical image Synthetic data generation using Generative methods

About

A efficient GAN framework for generating acne skin patches with limited data.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages