-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconstants.lua
277 lines (272 loc) · 9.36 KB
/
constants.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
NULL_SIGNAL = {signal = { type = "virtual", name = "signal-black" }, count = 0}
HALT_SIGNAL = {signal = { type = "virtual", name = "signal-mc-halt"} , count = 1}
RUN_SIGNAL = {signal = { type = "virtual", name = "signal-mc-run"}, count = 1}
STEP_SIGNAL = {signal = { type = "virtual", name = "signal-mc-step"}, count = 1}
SLEEP_SIGNAL = {signal = { type = "virtual", name = "signal-mc-sleep"}, count = 1}
JUMP_SIGNAL = {signal = { type = "virtual", name = "signal-mc-jump"}, count = 1}
OP_NOP = {type = 'nop'}
-- {type = "instruction", name = ""}
-- {type = "description", name = "", with_example = true}
-- with_note = true
local OLD_HELP_TEXT = [[
-- Registers (Read/Write):
mem1 mem2 mem3 mem4 out
-- Registers (Read Only):
mem5/ipt : Instruction pointer index
mem6/cnr : Number of signals on the red wire
mem7/cng : Number of signals on the green wire
mem8/clk : Clock (monotonic, always runnning)
-- Modules:
You can connect RAM Modules or other MicroControllers by placing
them above or below this MicroController.
External memory is mapped to:
mem11-14 (North Port 1)
mem21-24 (South Port 1)
mem31-34 (North Port 2)
mem41-44 (South Port 2)
MicroControllers can only connect to North and South port 1.
--- Wires:
red1 red2 redN...
green1 green2 greenN...
--- Pointers:
mem@N : Access memN where X is the value at memN
red@N : Access redX where X is the value at memN
green@N : Access greenX where X is the value at memN
--- Glossary:
Signal : A type and integer value.
Value : The integer value part of a signal.
Move : Copy a signal from one source to another.
Set : Set the Value of a register.
Register : A place that can store a signal.
Clear : Reset a register back to Black 0 (the NULL signal).
Find signal : Looks for a signal that has the same type
as the type stored in a register.
Label : A text identifier used for jumps.
--- Key:
W = Wire, I = Integer
M = Memory, O = Output
R = Register (Memory or Output)
L = Label (:id)
------- OP CODES ---------
OP A B : DESCRIPTION
------------:-------------
MOV W/R R...: Move signal from [A] to register(s).
SET M/I R : Set [B] signal count to [A].
SWP R R : Swap [A] with [B].
CLR R... : Clear register(s). Clears all if none specified.
FIR R : Find signal R from the red wire and move to mem1.
FIG R : Find signal R from the green wire and move to mem1.
JMP M/I/L : Jump to line [A] or label.
HLT : Halt the program.
NOP : No Operation.
--- Arithmetic Op Codes:
All arithmetic ops ignore type, type in memN is preserved.
ADD M/I M/I : Add [A] + [B], store result in memN.
SUB M/I M/I : Subtract [A] - [B], store result in memN.
MUL M/I M/I : Multiply [A] * [B], store result in memN.
DIV M/I M/I : Divide [A] / [B], store result in memN.
MOD M/I M/I : Modulo [A] % [B], store result in memN.
POW M/I M/I : Raise [A] to power of [B], store result in memN.
DIG M/I : Gets the [A]th digit from mem1, store result in mem1.
DIS M/I M/I : Sets the [A]th digit from mem1 to the 1st digit from [B].
BND M/I M/I : Bitwise [A] AND [B]
BOR M/I M/I : Bitwise [A] OR [B]
BXR M/I M/I : Bitwise [A] XOR [B]
BNO M/I : Bitwise NOT [A]
BLS M/I M/I : Bitwise LEFT SHIFT [A] by [B]
BRS M/I M/I : Bitwise RIGHT SHIFT [A] by [B]
BLR M/I M/I : Bitwise LEFT ROTATE [A] by [B]
BRR M/I M/I : Bitwise RIGHT ROTATE [A] by [B]
--- Test Op Codes:
Test Ops will skip the next line if the test is successful.
TGT M/I M/I : Tests if [A] value greater than [B] value.
TLT M/I M/I : Tests if [A] value less than [B] value.
TEQ M/I M/I : Tests if [A] value equals [B] value.
TNQ M/I M/I : Tests if [A] value does not equal [B] value.
TTE M M : Tests if [A] type equals [B] type.
TTN M M : Tests if [A] type does not equal [B] type.
--- Blocking Op Codes:
Blocking Ops will pause the program until the operation is complete.
SLP M/I : Sleep for [A] ticks.
BKR M/I : Block until there's [a]+ signals on the red wire.
BKG M/I : Block until there's [a]+ signals on the green wire.
SYN : Blocks until all other connected microcontrollers SYN.
--- Interrupts:
You can send interrupting signals to a microcontroller.
There are: HLT (halt), RUN (run), STP (step), SLP (sleep) and JMP (jump).
If a microcontroller receives any one of these signals it will
execute them immediately.
-------------------------------------------------------------------------
-------------------------------------------------------------------------
-- Example 1:
# Outputs the first signal
# from red multiplied by 2.
mov red1 mem1
mul mem1 2
mov mem1 out
jmp 2
-- Example 2:
# accumulates first 4
# signals on the red wire.
:SETUP
clr
set 11 mem2
set 1 mem3
:LOOP
mov red@3 mem1
add mem1 mem@2
mov mem1 mem@2
:NEXT
add mem2 1
tlt mem1 15
set 11 mem1
mov mem1 mem2
add mem3 1
tlt mem1 5
set 1 mem1
mov mem1 mem3
jmp :LOOP
]]
local BIS_DESCRIPTION = [[
<:I> specifies a parameter that takes a literal integer.
<:R> specifies a parameter that takes a register address.
<:W> specifies a parameter that takes a wire Input address.
<:L> specifies a parameter that takes a label.
]]
local EXAMPLE1 = ":LOOP\njmp :LOOP"
local EXAMPLE2 = "fig mem21\nmul mem1 2\nmov mem1 out"
local EXAMPLE3 = ":60 second clock.\nadd mem1 1\nmod mem1 60\njmp 1"
local EXAMPLE4 = [[
mov red1 mem1
mul mem1 2
mov mem1 out
]]
local EXAMPLE5 = [[
clr
set 11 mem2
set 3 mem2
:loop
mov red@3 mem1
add mem1 mem@2
mov mem1 mem@2
add mem2 1
tlt mem1 15
set 11 mem1
mov mem1 mem2
add mem3 1
tlt mem1 5
set 1 mem1
mov mem1 mem3
]]
DOCS = {
{
name = "overview",
content = {
{name = "registers"},
{name = "mapped-memory"}
}
},
{
name = "glossary",
content = {
{name = "signal_glossary"},
{name = "type_glossary"},
{name = "value_glossary"},
{name = "move_glossary"},
{name = "set_glossary"},
{name = "register_glossary"},
{name = "clear_glossary"},
{name = "null_glossary"},
{name = "label_glossary"}
}
},
{
name = "basic_instructions_set",
content = {
{example = BIS_DESCRIPTION},
{name = "description_BIS"},
{name = "comments_BIS", syntax = "#<comment>"},
{name = "labels_BIS", syntax = "#<label>", example = EXAMPLE1},
{name = "NOP_BIS", syntax = "nop"},
{name = "MOV_BIS", syntax = "mov <SRC:W/R> <DST:R>"},
{name = "SET_BIS", syntax = "set <SRC:I> <DST:R>"},
{name = "SWP_BIS", syntax = "swp <SRC:R> <DST:R>"},
{name = "CLR_BIS", syntax = "clr <DST:R>…"},
{name = "FIG_BIS", syntax = "fig <SRC:R>", example = EXAMPLE2},
{name = "FIR_BIS", syntax = "fir <SRC:R>"},
{name = "JMP_BIS", syntax = "jmp <SRC:I/R/L>", example = EXAMPLE1},
{name = "HLT_BIS", syntax = "hlt <SRC:R>"}
}
},
{
name = "arithmetic_instructions",
content = {
{name = "ADD_AI", syntax = "add <SRC:I/R> <DST:I/R>"},
{name = "SUB_AI", syntax = "sub <SRC:I/R> <DST:I/R>"},
{name = "MUL_AI", syntax = "mul <SRC:I/R> <DST:I/R>"},
{name = "DIV_AI", syntax = "div <SRC:I/R> <DST:I/R>"},
{name = "MOD_AI", syntax = "mod <SRC:I/R> <DST:I/R>", example = EXAMPLE3},
{name = "POW_AI", syntax = "pow <SRC:I/R> <DST:I/R>"},
{name = "DIG_AI", syntax = "swp <SRC:I/R>"},
{name = "DIS_AI", syntax = "dis <SRC:I/R> <DST:I/R>"},
{name = "BND_AI", syntax = "bnd <SRC:I/R> <DST:I/R"},
{name = "BOR_AI", syntax = "bor <SRC:I/R> <DST:I/R>"},
{name = "BXR_AI", syntax = "bxr <SRC:I/R> <DST:I/R>"},
{name = "BND2_AI", syntax = "bnd <SRC:I/R>"},
{name = "BLS_AI", syntax = "bls <SRC:I/R> <DST:I/R>"},
{name = "BRS_AI", syntax = "brs <SRC:I/R> <DST:I/R>"},
{name = "BLR_AI", syntax = "blr <SRC:I/R> <DST:I/R>"},
{name = "BRR_AI", syntax = "brr <SRC:I/R> <DST:I/R>"}
}
},
{
name = "test_instructions",
content = {
{name = "TGT_TI", syntax = "tgt <SRC:I/R> <DST:I/R>"},
{name = "TLT_TI", syntax = "tlt <SRC:I/R> <DST:I/R>"},
{name = "TEQ_TI", syntax = "teq <SRC:I/R> <DST:I/R>"},
{name = "TTE_TI", syntax = "tte <SRC:R> <DST:R>"},
{name = "TTN_TI", syntax = "ttn <SRC:R> <DST:R>"}
}
},
{
name = "blocking_instructions",
content = {
{name = "SLP_BI", syntax = "slp <SRC:I/R>"},
{name = "BKR_BI", syntax = "bkr <SRC:I/R>"},
{name = "BKG_BI", syntax = "bkg <SRC:I/R>"},
{name = "SYN_BI", syntax = "SYN"}
}
},
{
name = "interrupt_signals",
content = {
{name = "HLT_IS"},
{name = "RUN_IS"},
{name = "STP_IS"},
{name = "SLP_IS"},
{name = "JMP_IS"}
}
},
{
name = "pointers",
content = {
{name = "MEM_pointer"},
{name = "RED_pointer"},
{name = "GREEN_pointer"}
}
},
{
name = "example_programs",
content = {
{name = "MULTIPLY_INPUT_EP", example = EXAMPLE4},
{name = "ACCUMULATE_INPUT_EP", example = EXAMPLE5},
}
},
{
name = "old-help-text",
content = {
{example = OLD_HELP_TEXT}
}
}
}