-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_FDM.m
106 lines (81 loc) · 3.26 KB
/
sample_FDM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
%% Sample Code for Frame-Differencing Method %%
% This code generates time series of movement through the frame-differencing method
% described in the article, "Frame-Differencing Methods for Measuring Bodily Synchrony in
% Conversation" (Paxton & Dale, 2013; Behavior Research Methods). This paper was supported
% by the National Science Foundation under grants [BCS-0826825 and BCS-0926670].
%% PROCESSING LOOP % PROCESSING LOOP % PROCESSING LOOP % PROCESSING LOOP %
% insert appropriate directory below
cd('directory');
% basic variables
h = gcf;
sampling_rate = 8; % sampling rate (number of images per second generated from video)
target_window = 30; % desired window size (in seconds) for cross-corelation function
win_size = sampling_rate * target_window; % window size (in slices) for cross-correlation function
% fetch images
imgpath = 'img_*.jpg';
imgfiles = dir(imgpath);
disp(['Found ' int2str(length(imgfiles)) ' image files.'])
% create vectors for differenced image z-scores and L/R movement scores
image_z_diffs = [];
pLms = [];
pRms = [];
% begin loop through images
for j=2:length(imgfiles)
disp(['Processing image: ' int2str(j) '.']);
% prep the files
file_name = imgfiles(j).name;
image_2 = imread(file_name);
file_name = imgfiles(j-1).name;
image_1 = imread(file_name);
% collapse images across color
image_2 = mean(image_2,3);
image_1 = mean(image_1,3);
% turn images into pixel z-scores
image_2 = (image_2 - mean(image_2(:)))./std(double(image_2(:)));
image_1 = (image_1 - mean(image_1(:)))./std(double(image_1(:)));
% difference, standardize, and store difference vectors
image_diff = abs(image_2 - image_1);
image_z_diffs = [image_z_diffs ; mean(image_diff(:))];
% split images into L/R
pLm = mean(mean(mean(image_diff(:,1:320,:)))); % change pixels as needed to half image
pRm = mean(mean(mean(image_diff(:,321:end,:)))); % see above
% store split vectors
pLms = [pLms ; pLm];
pRms = [pRms ; pRm];
end
% apply Butterworth filter to results
[bb,aa] = butter(2,.2);
pLms = filter(bb,aa,pLms);
pRms = filter(bb,aa,pRms);
% get pLms/pRms vectors in text output
eval('save FDM_pLms pLms -ascii -tabs');
eval('save FDM_pRms pRms -ascii -tabs');
% save workspace
save sample_FDM.mat;
disp('Frame-Differencing for Sample Dyad Complete.')
% CALCULATE CORRELATIONS % CALCULATE CORRELATIONS % CALCULATE CORRELATIONS %
% create matrix for correlations
dy_xcorrs = [];
disp('Creating Correlations for Sample Dyad.')
% cross-correlate and fill matrix
dy_xcorr = xcov(pLms,pRms,win_size,'coeff');
dy_xcorrs = [dy_xcorrs dy_xcorr];
disp('Cross-Correlations for Sample Dyad Complete.')
% save workspace
save sample_FDM.mat
disp('MATLAB Workspace Saved.')
% GENERATE TEXT FILE % GENERATE TEXT FILE % GENERATE TEXT FILE %
% create csv file
delete('sample.FDM.csv');
data_out = fopen('sample.FDM.csv ','w');
disp('Text File Created.')
% fill the file with data
for x_corr=-win_size:win_size
% cross-correlation coefficients
fprintf(data_out,'%d,',eval(['dy_xcorrs(' int2str(x_corr) ')']));
% time slice
fprintf(data_out,'%d,',x_corr);
end
% close the data file
fclose(data_out);
disp('Text File Complete.');