forked from mostafaelaraby/wavegan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_wavegan.py
229 lines (197 loc) · 9.13 KB
/
train_wavegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from params import *
from utils import *
from wavegan import *
import torch.optim as optim
import torch
from torch.autograd import grad, Variable
from tqdm import tqdm
class WaveGan_GP(object):
def __init__(self, train_loader, val_loader):
super(WaveGan_GP, self).__init__()
self.g_cost = []
self.train_d_cost = []
self.train_w_distance = []
self.valid_g_cost = [-1]
self.valid_reconstruction = []
self.discriminator = WaveGANDiscriminator(
slice_len=window_length,
model_size=model_capacity_size,
use_batch_norm=use_batchnorm,
num_channels=num_channels,
).to(device)
self.discriminator.apply(weights_init)
self.generator = WaveGANGenerator(
slice_len=window_length,
model_size=model_capacity_size,
use_batch_norm=use_batchnorm,
num_channels=num_channels,
).to(device)
self.generator.apply(weights_init)
self.optimizer_g = optim.Adam(
self.generator.parameters(), lr=lr_g, betas=(beta1, beta2)
) # Setup Adam optimizers for both G and D
self.optimizer_d = optim.Adam(
self.discriminator.parameters(), lr=lr_d, betas=(beta1, beta2)
)
self.train_loader = train_loader
self.val_loader = val_loader
self.validate = validate
self.n_samples_per_batch = len(train_loader)
def calculate_discriminator_loss(self, real, generated):
disc_out_gen = self.discriminator(generated)
disc_out_real = self.discriminator(real)
alpha = torch.FloatTensor(batch_size, 1, 1).uniform_(0, 1).to(device)
alpha = alpha.expand(batch_size, real.size(1), real.size(2))
interpolated = (1 - alpha) * real.data + (alpha) * generated.data[:batch_size]
interpolated = Variable(interpolated, requires_grad=True)
# calculate probability of interpolated examples
prob_interpolated = self.discriminator(interpolated)
grad_inputs = interpolated
ones = torch.ones(prob_interpolated.size()).to(device)
gradients = grad(
outputs=prob_interpolated,
inputs=grad_inputs,
grad_outputs=ones,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
# calculate gradient penalty
grad_penalty = (
p_coeff
* ((gradients.view(gradients.size(0), -1).norm(2, dim=1) - 1) ** 2).mean()
)
assert not (torch.isnan(grad_penalty))
assert not (torch.isnan(disc_out_gen.mean()))
assert not (torch.isnan(disc_out_real.mean()))
cost_wd = disc_out_gen.mean() - disc_out_real.mean()
cost = cost_wd + grad_penalty
return cost, cost_wd
def apply_zero_grad(self):
self.generator.zero_grad()
self.optimizer_g.zero_grad()
self.discriminator.zero_grad()
self.optimizer_d.zero_grad()
def enable_disc_disable_gen(self):
gradients_status(self.discriminator, True)
gradients_status(self.generator, False)
def enable_gen_disable_disc(self):
gradients_status(self.discriminator, False)
gradients_status(self.generator, True)
def disable_all(self):
gradients_status(self.discriminator, False)
gradients_status(self.generator, False)
def train(self):
progress_bar = tqdm(total=n_iterations // progress_bar_step_iter_size)
fixed_noise = sample_noise(batch_size).to(
device
) # used to save samples every few epochs
gan_model_name = "gan_{}.tar".format(model_prefix)
first_iter = 0
if take_backup and os.path.isfile(gan_model_name):
if cuda:
checkpoint = torch.load(gan_model_name)
else:
checkpoint = torch.load(gan_model_name, map_location="cpu")
self.generator.load_state_dict(checkpoint["generator"])
self.discriminator.load_state_dict(checkpoint["discriminator"])
self.optimizer_d.load_state_dict(checkpoint["optimizer_d"])
self.optimizer_g.load_state_dict(checkpoint["optimizer_g"])
self.train_d_cost = checkpoint["train_d_cost"]
self.train_w_distance = checkpoint["train_w_distance"]
self.valid_g_cost = checkpoint["valid_g_cost"]
self.g_cost = checkpoint["g_cost"]
first_iter = checkpoint["n_iterations"]
for i in range(0, first_iter, progress_bar_step_iter_size):
progress_bar.update()
self.generator.eval()
with torch.no_grad():
fake = self.generator(fixed_noise).detach().cpu().numpy()
save_samples(fake, first_iter)
self.generator.train()
self.discriminator.train()
for iter_indx in range(first_iter, n_iterations):
self.enable_disc_disable_gen()
for _ in range(n_critic):
real_signal = next(self.train_loader)
# need to add mixed signal and flag
noise = sample_noise(batch_size * generator_batch_size_factor)
generated = self.generator(noise)
#############################
# Calculating discriminator loss and updating discriminator
#############################
self.apply_zero_grad()
disc_cost, disc_wd = self.calculate_discriminator_loss(
real_signal.data, generated.data
)
assert not (torch.isnan(disc_cost))
disc_cost.backward()
self.optimizer_d.step()
if self.validate and iter_indx % store_cost_every == 0:
self.disable_all()
val_data = next(self.val_loader)
val_real = val_data
with torch.no_grad():
val_discriminator_output = self.discriminator(val_real)
val_generator_cost = val_discriminator_output.mean()
self.valid_g_cost.append(val_generator_cost.item())
#############################
# (2) Update G network every n_critic steps
#############################
self.apply_zero_grad()
self.enable_gen_disable_disc()
noise = sample_noise(batch_size * generator_batch_size_factor)
generated = self.generator(noise)
discriminator_output_fake = self.discriminator(generated)
generator_cost = -discriminator_output_fake.mean()
generator_cost.backward()
self.optimizer_g.step()
self.disable_all()
if iter_indx % store_cost_every == 0:
self.g_cost.append(generator_cost.item() * -1)
self.train_d_cost.append(disc_cost.item())
self.train_w_distance.append(disc_wd.item() * -1)
progress_updates = {
"Loss_D WD": str(self.train_w_distance[-1]),
"Loss_G": str(self.g_cost[-1]),
"Val_G": str(self.valid_g_cost[-1]),
}
progress_bar.set_postfix(progress_updates)
if iter_indx % progress_bar_step_iter_size == 0:
progress_bar.update()
# lr decay
if decay_lr:
decay = max(0.0, 1.0 - (iter_indx * 1.0 / n_iterations))
# update the learning rate
update_optimizer_lr(self.optimizer_d, lr_d, decay)
update_optimizer_lr(self.optimizer_g, lr_g, decay)
if iter_indx % save_samples_every == 0:
with torch.no_grad():
latent_space_interpolation(self.generator, n_samples=2)
fake = self.generator(fixed_noise).detach().cpu().numpy()
save_samples(fake, iter_indx)
if take_backup and iter_indx % backup_every_n_iters == 0:
saving_dict = {
"generator": self.generator.state_dict(),
"discriminator": self.discriminator.state_dict(),
"n_iterations": iter_indx,
"optimizer_d": self.optimizer_d.state_dict(),
"optimizer_g": self.optimizer_g.state_dict(),
"train_d_cost": self.train_d_cost,
"train_w_distance": self.train_w_distance,
"valid_g_cost": self.valid_g_cost,
"g_cost": self.g_cost,
}
torch.save(saving_dict, gan_model_name)
self.generator.eval()
if __name__ == "__main__":
# train_loader = WavDataLoader(os.path.join(target_signals_dir, "train"))
# val_loader = WavDataLoader(os.path.join(target_signals_dir, "valid"))
train_loader = MyWavDataLoader(target_signals_dir, pick_species=pick_species, is_train=True)
val_loader = MyWavDataLoader(target_signals_dir, pick_species=pick_species, is_train=False)
wave_gan = WaveGan_GP(train_loader, val_loader)
wave_gan.train()
visualize_loss(
wave_gan.g_cost, wave_gan.valid_g_cost, "Train", "Val", "Negative Critic Loss"
)
latent_space_interpolation(wave_gan.generator, n_samples=5)