-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
99 lines (77 loc) · 3.06 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from os.path import exists, join, basename
from os import makedirs, remove
from six.moves import urllib
import tarfile
from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize
from dataset import DatasetFromFolder
def download_bsd300(dest="dataset"):
output_image_dir = join(dest, "BSD500/images")
if not exists(output_image_dir):
makedirs(dest)
url = "http://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300-images.tgz"
print("downloading url ", url)
data = urllib.request.urlopen(url)
file_path = join(dest, basename(url))
with open(file_path, 'wb') as f:
f.write(data.read())
print("Extracting data")
with tarfile.open(file_path) as tar:
for item in tar:
tar.extract(item, dest)
remove(file_path)
return output_image_dir
def calculate_valid_crop_size(crop_size, upscale_factor):
return crop_size - (crop_size % upscale_factor)
def input_transform(crop_size, upscale_factor):
return Compose([
CenterCrop(crop_size),
Resize(crop_size // upscale_factor),
ToTensor(),
])
def target_transform(crop_size):
return Compose([
CenterCrop(crop_size),
ToTensor(),
])
def get_training_set(data_dir, upscale_factor):
root_dir = data_dir # download_bsd300()
train_dir = join(root_dir, "train")
crop_size = calculate_valid_crop_size(256, upscale_factor)
return DatasetFromFolder(train_dir,
input_transform=input_transform(crop_size, upscale_factor),
target_transform=target_transform(crop_size))
#from PIL import Image
#import os
#import numpy as np
def get_test_set(data_dir, upscale_factor):
root_dir = data_dir # download_bsd300()
test_dir = join(root_dir, "test")
crop_size = calculate_valid_crop_size(256, upscale_factor)
#my code
# test_images= os.listdir(test_dir)
#
# for input_image in test_images:
#
# img = Image.open(test_dir+'/'+input_image).convert('YCbCr')
# y, cb, cr = img.split()
# target_t=target_transform(crop_size)
# target= target_t(y)
## print(target)
# out = target.cpu()
# print('out.shape', out.shape)
# out_img_y = out.detach().numpy()
# out_img_y *= 255.0
# out_img_y = out_img_y.clip(0, 255)
# out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L')
#
# out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
# out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
# out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB')
#
# # print(input_image)
# out_img.save('demo/' + input_image)
# print('target shape', target.shape) #torch.Size([1, 255, 255])
# print('cb shape', cb.shape)
return DatasetFromFolder(test_dir,
input_transform=input_transform(crop_size, upscale_factor),
target_transform=target_transform(crop_size))